
INFORMATION AND COMPUTATION 75, 130-143 (1987)

Asynchronous Byzantine Agreement Protocols

GABRIEL BRACHA

13Barr Street, Tel-Aviv 69104, Israel

A consensus protocol enables a system of n asynchronous processes, some of
them faulty, to reach agreement. Both the processes and the message system are
capable of cooperating to prevent the correct processes from reaching decision. A
protocol is t-resilient if in the presence of up to t faulty processes it reaches
agreement with probability 1. Byzantine processes are faulty processes that can
deviate arbitrarily from the protocol; Fail-Stop processes can just stop par-
ticipating in it. In a recent paper, f-resilient randomized consensus protocols were
presented for t < n/S. We improve this to f <n/3, thus matching the known lower
bound on the number of correct processes necessary for consensus. The protocol
uses a general technique in which the behavior of the Byzantine processes is restric-
ted by the use of a broadcast protocol that filters some of the messages. The
apparent behavior of the Byzantine processes, filtered by the broadcast protocol, is
similar to that of Fail-Stop processes. Plugging the broadcast protocol as a com-
municating primitive into an agreement protocol for Fail-Stop processes gives the
result. This technique, of using broadcast protocols to reduce the power of the
faulty processes and then using them as communication primitives in algorithms
designed for weaker failure models, was used succesfully in other contexts. ‘!:I 1987

Academic Press. Inc.

1. INTRODUCTION

An important advantage of distributed systems over centralized systems
is their ability to tolerate failures. A common method to achieve that
ability is to have several processes cooperatively perform the same task.
Fundamental to such cooperation is the ability of processes to agree on a
common datum or action, The cOn,sensu.r and Byzantine Generals (Lamport
et al., 1982; Pease et al., 1980) problems provide basic paradigms of achiev-
ing agreement in distributed systems in the presence of faulty processes.

In the consensus problem, each process p starts with a local binary value,
value,, and the processes have to decide on a common value. A consensus
protocol that solves the consensus problem terminates when each correct
process makes an irreversible decision on some value. The protocol must
satisfy the following properties:

Agreement: all correct processes decide on the same value.

Validity: if all correct processes start with the same value u, then all
correct processes decide on v.

130
0890-5401/87 $3.00
Copyright :i:: 1987 by Academic Press. Inc.
All rights of reproduction in any form reserved

BYZANTINE AGREEMENT PROTOCOLS 131

In the Byzantine Generals problem, one process, the transmitter, broad-
casts its local value, u, to the other processes. The processes have to agree
on the value of the transmitter. A Byzantine Generals protocol must satisfy
the following properties:

Agreement: all correct processes decide on the same value.

Validity: if the transmitter is correct then all correct processes decide u.

We consider the following model of a distributed system. The system
consists of n processes that communicate by sending messages through a
message system. We assume a reliable message system in which no
messages are lost or generated. Each process can directly send messages to
any other process, and can identify the sender of every message it receives.
Up to t of the processes are faulty and may deviate from the protocol. A
protocol is called t-resilient if it satisfies the agreement and validity
requirements in the presence of up to t faulty processes.

Solutions to agreement problems depend strongly on the assumptions
made about the system and the type of solution desired. There are several
orthogonal parameters that characterize agreement problems. These
parameters define the synchrony of the system, the behavior of faulty
processes, and the way the protocol terminates (deterministic termination
or probabilistic termination).

Two basic types of systems are considered: synchronous systems and
asynchronous systems. In a synchronous system, processes run in lock step,
and messages sent in one step are received in the next. Protocols in such
systems can be viewed as a sequence of rounds. In each round, every
process sends messages to other processes, receives messages sent to it in
that round, and then changes its state according to these messages.

The other extreme is an asynchronous system in which there are no
bounds on message delays or relative speeds of processes. In such a system,
it is impossible to detect missing messages; there is no way to distinguish
between a “slow” message and a message not sent. Protocols for
asynchronous systems can also be viewed as a sequence of rounds. In each
round, every process sends messages to all others, waits for only n - t
messages of that round, and changes state. The processes cannot wait for
more than IZ - t messages in a round since there is a possibility that all t
faulty processes do not send any message in that round.

In synchronous systems, the execution of the protocol is determined by
the initial values of all processes and by the behavior of faulty processes. In
asynchronous systems, we need to postulate an additional agent, the
schedufer, that will determine in each round for each process which n - t
messages it receives out of n potential messages. We assume that the
scheduler is an adversary scheduler and that it tries to prevent agreement
by selectively routing messages to processes.

132 GABRIEL BRACHA

There is a whole spectrum of failure types, varying in the degree faulty
processes can deviate from the protocol. The failure type affects the com-
plexity of the protocol and the number of faulty processes it tolerates. In
this paper we consider the following failure types:

Fuil-Stop. Faulty processes may omit messages at any time, but after
the first such omission, they “die” and stop participating in the protocol.

Byzantine. Faulty processes may deviate arbitrarily from the
protocol; in particular they can fail to send messages when they should and
can send spurious and contradictory messages.

There are two types of protocols: deterministic and randomized. In deter-
ministic protocols no random steps are taken; the execution depends on the
initial values, the behavior of faulty processes, and the scheduler. Protocols
that use random steps are called randomized protocols.

For deterministic protocols we impose the following termination
requirement:

Termination (deterministic). All correct processes decide by round r,
for some a priori known constant r.

In Fischer et al. (1985) it was shown that, in asynchronous systems, deter-
ministic consensus protocols are impossible even in the simple case of only
one Fail-Stop process.

For randomized protocols we only require that agreement is eventually
reached. In other words,

Termination (probabilistic). The probability that a correct process is
undecided after r rounds approaches zero as r approaches infinity.

Thus, though the number of rounds to reach agreement is not bounded,
the probability that the protocol does not terminate is zero.

In Ben-Or (1983) a t-resilient consensus protocol for asynchronous
systems is presented. This protocol tolerates I <n/2 Fail-Stop processes, or
t < n/5 Byzantine processes.

In Bracha and Toueg (1985) a weaker model is treated where there are
some probabilistic assumptions on the behavior of the scheduler.

In Rabin (1983) a t-resilent consensus protocol for asynchronous
systems with t <n/10 Byzantine processes is presented. The expected
number of rounds to reach agreement is only four. In Toueg (1984) this
protocol is extended to tolerate up to t < n/3 faulty processes. However, the
model of Rabin (1983) is stronger than our model. It assumes an initial
stage in which a sequence of coin tosses is reliably distributed to all the
processes. But distributed on-line generation of such a sequence of coin
tosses is very costly, and therefore we cannot compare this protocol to
protocols that run on our model.

BYZANTINEAGREEMENTPROTOCOLS 133

In Ben-Or (1983) it was left as an open problem whether there are con-
sensus protocols that can tolerate up to n/5 6 t <n/3 Byzantine processes.
In this paper we answer that question by presenting a randomized consen-
sus protocol that tolerates up to t < n/3 Byzantine processes, thus matching
the lower bound on the number of correct processes required for any
consensus protocol (Bracha and Toueg, 1985).

The main contribution of this paper is in the methodology that it
illustrates. Instead of dealing directly with the worst behavior of the Byzan-
tine processes, we develop a general technique that reduces their effect on
the system so they can do little more than Fail-Stop processes. The techni-
que has two parts, a reliable broadcast primitive and a validation method.
The broadcast primitive forces the faulty processes either to send nothing
or to send the same message to all correct processes. The validation
method forces the faulty processes to send only messages that could have
been sent by correct processes. This validation method is then plugged as a
communication primitive in an agreement protocol for FaillStop processes.
This methodology of designing protocols that reduce the power of the
faulty processes and then using those protocols as communication
primitives yields efficient algorithms that are easy to understand and prove.
Also, it is quite general; it was carried further in (Srikanth and Toueg,
1984; Toueg et al., 1985) where it yielded simpler and more efficient syn-
chronous Byzantine Generals protocols and clock synchronization
algorithms.

Plugging the assumptions of Rabin’s model into the protocol we
immediately obtain the result of Toueg (1984) and an improvement on
Rabin (1983).

We also prove that Byzantine Generals protocols are impossible in
asynchronous systems. A weaker version of the Byzantine Generals
problem is proposed and solved.

2. RELIABLE BROADCAST

We first present a broadcast protocol that will be used as a primitive in
the consensus protocol. In a single instance of the broadcast protocol, some
designated process, p, sends messages containing its value to all other
processes. The protocol is a reliable broadcast protocol if it satisfies the
following properties:

1. if p is correct, then all correct processes agree on the value of its
message;

2. if p is faulty then, either all correct processes agree on the same
value or none of them accepts any value from p.

643:75/2-4

134 GABRIEL BRACHA

2.1. The Broadcast Primitive

The broadcast primitive is described in Fig. 1. There are three types of
messages used in the protocol: initial, echo, and ready. An (initial, v)
message means that p wishes to broadcast the value v. An (echo, u) message
means that its sender knows that p sent v because it received either an
(initial, u) message from p, or enough (echo, u) or (ready, u) messages con-
firming it. A (ready, u) message means that its sender knows that v is the
only value sent by p, and that it is ready to accept v because it received
enough (echo, v) or (ready, u) messages. When a processes receives enough
(ready, v) messages it Accepts u as the value sent by p, knowing that all
other correct processes are bound to accept v too.

The protocol is divided into steps corresponding to the message types. In
each step a process waits until it receives enough messages that permit it to
send the next message type (including those received at previous steps),
then it sends a message to all the processes and moves to the next step.
Thus, a correct process sends one message of each type (one message each
step) to any other process. When process p wants to broadcast a value v, it
calls Broadcast(u). The broadcast is succesful if all the correct processes
Accept u. Thus, Broadcast and Accept provide us a pair of communication
primitives.

2.2. Correctness Proof

In this section we show that, for 0 d t < n/3, the protocol of Fig. 1 is a
reliable broadcast protocol.

LEMMA 1. Zf two correct processes s and t send (ready, v) and (ready, u)
messages, respectively, then u = V.

Protocol 1

Broadcasc(v)
step 0. (By process p)

Send (initial ,v) to all the processes

step 1. Walt until the receipt of,
one (initial ,v) message
or (n +r)i2 (echo ,Y) messages
or (r+l) (ready .v) messages
for some Y

Send (echo .v) to all the processes.

step 2. Wait until the receipt of,
(n+r)/Z (echo .v) messages
or 1+1 (ready ,“) lIEssages
(including messages received in step 1)
for smne Y

Send (ready ,v) to all the processes.

step 3. Wait until the mceipt of,
21+1 (remfy .“) messages
(including messages received in step 1 and step 2) for some v

Accepr Y.

FIG. 1. The broadcast primitive.

BYZANTINEAGREEMENTPROTOCOLS 135

Proof: Suppose not; let q be the first process that sends a (ready, 21)
message, and let Y be the first process that sends a (ready, U) message.
Process q must have received more than (n + t)/2 (echo, u) messages, and
process r must have received more than (n + t)/2 (echo, u) messages.
Therefore, some correct process must have sent both (echo, U) and (echo, o)
messages. But correct processes send only one message of each type during
a broadcast, and hence a contradiction. [

LEMMA 2. Zf two correct processes, q and r, accept the values u and u,
respectively, then u = v.

ProofY If q accepts the value u then it must have received (2t + 1)
(ready, v) messages, and therefore at least (t + 1) (ready, a) messages from
correct processes. Similarly, r must have received at least (t + 1) (ready, u)
messages from correct processes. By Lemma 1, u = v. 1

LEMMA 3. Zf a correct process q accepts the value v then every other
correct process will eventually accept v.

Proof If q accepts the value v then q received (2t + 1) (ready, u)
messages. At least t + 1 of these messages were sent by correct processes.
Therefore, every other process receives at least (t + 1) (ready, v) messages,
and sends its own (ready, u) message. Note that by Lemma 1 it is
impossible for a correct process to send a different ready message. Thus, at
least n - t processes send (ready, U) messages. Every correct process r even-
tually receives at least (2t + 1 < n - t) (ready, u) messages and accepts u. B

LEMMA 4. Zf a correct process p broadcasts v then all correct processes
accept v.

ProoJ Suppose that p is correct and broadcasts u. Every correct process
q receives an (initial, o) message and responds by sending (echo, u)
messages. Every correct process q will receive (n - t > (n + t)/2) (echo, u)
messages from the correct processes, and possibly t < (n + t)/2 different
messages from the faulty processes. Therefore, q will send a (ready, t’)
message. In step 3, every correct process q will receive (n - t > 2t + 1)
(ready, u) messages, and possibly t different ready messages from the faulty
processes. Therefore q will accept u. 1

THEOREM 1. The protocol of Fig. 1 is a reliable broadcast protocol.

Proof: Let process p broadcast a message with the value u:

1. If p is correct then, by Lemma 4, all correct processes accept u.

2. If p is faulty and some correct process q accepts a value u, then, by
Lemma 3, all correct processes accept v. Otherwise, no correct process
accept any value. 1

136 GABRIELBRACHA

3. CORRECTNESS ENFORCEMENT

In the previous section, we restricted the behavior of the Byzantine
processes by forcing them to send the same message to all processes or no
message at all. However, we could not control the content of the message.
In this section we present a scheme that forces the Byzantine processes to
conform to the underlying protocol.

Consider the general outline of an asynchronous protocol in Fig. 2. N is
the protocol function that determines the new value of the variable v
according to the round number and S. Note that the set of II - t messages
from round k could have been received by process p while it was not yet in
round k, these messages are stored by p till round k and only then they are
used to generate the value u. We will show that for any protocol that can
be put in this form the faulty processes can be forced to send only messages
according to the protocol.

As a first step we use Broadcast and Accept instead of Send and Receive.
This will cause several instances of the broadcast protocol to be active
at the same time: broadcasts of different processes and, because of
the asynchrony of the system, even broadcasts of the same process but
from different rounds. To distinguish between messages sent in different
broadcasts, all messages sent in the kth round by process p will be
tagged with (p, k). A message of the form (p, k, u) is said to be a k-message
with value u. A call to Broadcast (p, k, u) initiates the broadcast protocol
of Fig. 1 with all messages tagged with (p, k). For each round k, each
process p maintains a set of k-messages, VALID:, defined as follows:
VALID;= {(q, 1, v)l(q, 1, u) is accepted, and VE {O, l}}.

For k > 1, (q, k, v) E VALID:, if (q, k, V) is accepted, and there exist n - t
messages ml, m, ~ I E VALID; ’ such that v= N(k- 1, {r?z,, m,,- ,}).

The processes update their VALID sets whenever they accept a message.
A process p validates a k-message m if m E VALID:. Messages that are not
validated are ignored in the protocol (although they are still stored for
future validation). Intuitively, a k-message m is validated only if it could
have been sent by a correct process in that round.

The basic round form is modified again to use Broadcast and Validate
instead of Send and Receive, so that it has the following form shown in
Fig. 3.

We now show that Validate has the same properties as Accept:

round(k) by pmcess~
Send @ ,k ,Y) m all the processes
Wait until a set S of n - f messages from round k have been received
Y :=N(k,S)

FIG. 2. A round of a general asynchronous protocol.

BYZANTINEAGREEMENTPROTOCOLS 137

round(k) by process p
Broadcasr@ ,k ,Y)
Wait till a set S of n - f k-messages have been validated
Y :=N(k,S)

FIG. 3. A modified round of a general asynchronous protocol

LEMMA 5. Zf twu correct processes, p and q, validate (Y, k, v) and (r, k, u)
messages, respectively, then u = v.

Proof: Ifp(q) validates (r, k, u) (resp. (r, k, u)) then it must accept it. By
Theorem 1, u = v. b

LEMMA 6. If a correct process p validates a k-message m, then every
other correct process q validates m, i.e., if p and q are correct then
VALID; = VALID;.

ProoJ: The proof is by induction on k. If k = 1, then by Theorem 1, if m
is accepted by p then m will be accepted by q, and we are done. Let us
assume that the statement of the lemma holds for some k 3 1. Let
m=(r,k+ 1, U)E VALZD,k+‘. Therefore, there are n - t messages
m 1, m,, , E VALID: such that o = N(k, {m,, m,, r}). By our induc-
tion hypothesis, m, , m, ~. f E VALID:. By Theorem 1, q will eventually
accept m, Therefore, by definition, m E VALID: + I. 1

LEMMA 7. If a correct process p broadcasts a k-message m, then ever)’
correct process q eventually validates m.

Proqf: The proof is by induction on k. If k = 1, then, by Theorem 1, we
are done. Suppose that the statement of the lemma holds for round k. Since
p is correct, it can send m = (p, k + 1, U) only if there exist n - t messages,
m 1 > m, ~, E VALZD:. such that u=N(k, (m,, m,,- ,)). By Lemma 6,
for every correct process q and for each mi, 1 6 i<tn - t, eventually
nr,~ VALID{. Also, since p is correct, by Theorem 1, every other correct
process q will accept m. Therefore, eventually m E VALZD$+ ’ for every
correct process. 1

So far we have shown that the Broadcast and Validate primitives provide
us a reliable broadcast protocol. The additional power of Validate will be
explicitly exploited in the consensus protocol in the next section.

4. THE CONSENSUS PROTOCOL

In this section we show how to construct an n/3-resilient consensus
protocol using the primitives described in the previous sections. The
protocol is basically the consensus protocol of Ben-Or (1983) and Bra&

138 GABRIEL BRACHA

and Toueg (1985), into which we plugged our stronger communication
primitives.

The protocol, described in Fig. 4, is conducted in phases that are
executed by all processes; a process can proceed to phase i+ 1 only after it
completed phase i. Phase i consists of rounds 3i + 1, 3i + 2, and 3i + 3, that
are instances of the generic round of Fig. 3. The messages contain either a
simple value, u, or a tagged value, (d, u), indicating that the process is
ready to decide u at that phase. For notational convenience, the protocol in
Fig. 4 does not terminate once a decision is made. However, this can be
easily accomplished.

5. CORRECTNESS PROOF

In this section we prove that the protocol in Fig. 4 is a t-resilient consen-
sus protocol, for t <n/3. Since the protocol requires processes to wait for
each other, we must show that it does not deadlock.

LEMMA 8. If a correct process p is at round i, then p will eventually
progress to round i + 1.

Proof: Suppose not; then some correct processes are forever blocked.
Let r be the first round in which some correct process p is forever blocked.
By choice of r, all correct processes have already broadcast messages at
that round. By Lemma 7, all these messages are eventually validated.
Therefore, p is not blocked at round r, a contradiction. 1

LEMMA 9. Zf at the beginning of round 3r + 1 all correct processes have
the same value v, then they all decide v at round 3r + 3.

Proof All n - t correct processes have v as their value at the beginning
of round 3r + 1. Therefore, every correct process will validate at least n - 2t
messages with value u at round 3r + 1. Since n - 2t > (n - t)/2 for t < n/3,
each correct process retains u as its value at round 3r + 1. By Lemma 8 all
correct processes will proceed to rounds 3r + 2 and 3r + 3. At round 3r + 2,

Protocol 2
Phase(i): (by process p)

I. Broadcasr(p ,3i+l,valuep). Wait until validate n --I 3i+l-messages.
vnltq, := majority value of the n - t validated messages.

2. Broodcasr@ 3i+Z,valq,). Wait until validate n - f 3i+2-messages.
(i) If more than n/2 of the messages have the fame value Y, then vnluep = (d ,Y)
(ii) Otherwise, valuep := valuep

3. Eroodcmr@ ,3i+3,valuep). Wait until validate n --f 3i+3-messages.
(i) If validated more than 21 messages with value (d,v) then decision, := value, := Y
(ii) If validated more than r messages with value (d ,v) then valq, := Y
(iii) Otherwise, V&M, :=coin-toss (0 or 1 with probability l/z).
Gomroundlofphasei+l

FIG. 4. The consensus Drotocol.

BYZANTINEAGREEMENTPROTOCOLS 139

in order to validate a message with value u # v, a correct process must also
validate at least (n - t)/2 messages with value u from round 3r + 1. Since
(n - r)/2 > t, this is clearly impossible. Therefore, the only possible value
validated in round 3r + 2 is v, and all correct processes change their value
to (d, v). At round 3r + 3, all correct processes validate at least 2t + 1
messages with value (d, v), and they decide D. 1

LEMMA 10. Let p and q be correct processes. If at phase r, p validates a
message with value (d, v), and q validates a message with value (d, u)
message, then u = v.

Proof Suppose not; then some correct processes p and q have validated
messages in round 3r -t- 3 with values (d, u) and (d, u), respectively. If p
validates a message with value (d, v) it must also validate more than n/2
messages with value u that were broadcast at round 3r + 2. Similarly, q
must have validated more than n/2 messages with value u that were broad-
cast at round 3r + 2. Thus, for some process s, p validated an (s, 3r + 2, v)
message while q validated an (s, 3r + 2, u) message. By Lemma 5, u = u. 1

THEOREM 2. The protocol described in Figure 4 is a t-resilient consensus
protocol, for t < n/3.

Proof: We show that the protocol satisfies the validity, agreement, and
termination properties:

Validity. If all the processes start with value u then, by Lemma 9,
they all decide v.

Agreement. Suppose, without loss of generality, that a correct
process p decides 1 at round 3r + 3. Process p must have validated at least
2t + 1 messages with value (d, 1). By Lemma 6, every other correct process
validates at least t + 1 such messages. Thus at step (ii) of round 3r + 3,
every correct process q sets u, = 1. At the beginning of phase r + 1 every
correct process has value 1. By Lemma 9, at the end of phase r + 1, every
correct process decides 1.

Termination. Considei phase r of the protocol. Some processes are
forced to set their value at round 3r + 3 at step (ii), while the remainder
choose their values at step (iii) by a coin toss. Consider p, the first correct
process that has completed the validation in round 3r + 3. There are two
cases:

1. Process p has validated a message with value (d, v). With
probability p > 2 ~ In ~ I), all the correct processes that toss a coin
at phase r will toss v. By Lemma 10, the rest of the correct
processes are forced (case (ii) of round 3r + 3 in Fig. 4) to set
their value to v.

140 GABRIELBRACHA

2. Process p has not validated a message with value (4 u). If some
other correct process q validates more than t messages with
value (d, u), then one of these messages would have been among
the n - t messages that p validated, and hence a contradiction.
Therefore, no correct process validates more than t messages
with value (d, v) for any value u, no process has its value forced,
and all correct processes toss coins. Again, with probability
p>2-‘“-“, all correct processes will set their values to 1.

In either case, with probability greater then 22(“-‘I, all the processes have
the same value at the beginning of phase r + 1, and by Lemma 9 they all
decide in phase r + 1. The probability of not terminating is
lim,, m (1 -p)‘=O. 1

In Bracha and Toueg (1985) it was proved that for t&n/3, t-resilient
randomized asynchronous consensus protocols are impossible. Thus, the
protocol is optimal in the number of faulty processes it can tolerate.

6. PERFORMANCE

THEOREM 3. (i) If t = c. n for some constant c, then the expected
number of phases to reach agreement is exponential in n.

(ii) If t=cJ f n or some constant c, then the expected number qf
phases to reach agreement is a constant that does not depend on n (although
it is exponential in c).

ProoJ The proof can be found in (Ben-Or, 1983). 1

Theorem 3 provides us with a measure of the expected number of
asynchronous steps taken by each process. We can also run the protocol in
a synchronous system, but if we want to deduce the synchronous running
time of the protocol from Theorem 3 we have to be more careful. Consider
an instance of the broadcast protocol that is run in an synchronous system:
If it is initiated by a correct process then it takes exactly three time-steps,
but if it is initiated by a faulty process than it can take an indefinite
amount of time, or it does not terminate at all. However, a round of the
consensus protocol requires the termination of n - t broadcasts which is
guaranteed within three time-steps by the correct processes. Thus the
correct processes set a pace of three time-steps per round, and the expected
synchronous running time is constant (9) factor of the expected number of
phases as specified by Theorem 3.

BYZANTINEAGREEMENTPROTOCOLS 141

7. RABIN'S MODEL

Rabin proposed in (Rabin, 1983) an n/lo-resilient consensus protocol
whose expected number of rounds is 4. In (Toueg, 1984) this protocol was
extended to tolerate up to t < n/3 Byzantine processes. These protocols
assume a stronger model of a distributed system than our own and
therefore are not comparable to our protocol. This model assumes an
initial phase in which a trusted dealer computes a sequences of coin tosses
and distributes it to all the processes. Each coin toss value is shared among
the processes by the “secret sharing” method, which guarantees that a
collaboration of at least t + 1 processes is needed to find the value of the
coin. Thus, the rth coin toss will be available to processes only in the rth
phase. A coin toss such that, after the toss, all the processes are guaranteed
to have the same value of the coin is known as a global coin toss.

We can easily modify Protocol 2 to accommodate Rabin’s model and
immediately obtain the result of Toueg (1984). Instead of having each
process toss its own coin in the third round of each phase, the processes
access the global coin toss by exchanging portions of it. The resulting
protocol is a consensus protocol that tolerates up to t <n/3 Byzantine
processes and whose expected number of phases to termination is two.

8. ASYNCHRONOUS BYZANTINE GENERAL PROTOCOL

In this section we investigate the Byzantine Generals problem in
asynchronous systems with Byzantine processes. In synchronous systems
the Byzantine Generals problem is easily reduced to the consensus
problem. First, the transmitter sends its value to all other processes. Then,
the processes run a consensus protocol on the values they received from the
transmitter. In asynchronous systems, such reduction is impossible. The
processes do not know if the transmitter sent them any message at all, and
therefore they cannot decide whether to continue waiting for a message
from the transmitter or to regard the value of the transmitter as some
default value. Thus, the termination properties for Byzantine Generals
protocols are not achievable in an asynchronous system.

THEOREM 4. Byantine Generals protocols are impossible in
asynchronous systems even in the presence of a single fault.

Proof: Suppose that Byzantine Generals protocols are possible in an
asynchronous system. Consider the following scenarios:

1. The transmitter is faulty, and all other processes are correct. The
transmitter does not send any messages during the protocol. By the ter-

142 GABRIEL BRACHA

mination property of Byzantine Generals protocols, the processes agree on
some value, let us say 0, at some time r,.

2. The transmitter and the rest of the processes are correct. The
transmitter sends l-messages according to the protocol, however, none of
these messages arrives befor time r,,. Until time T,, the correct processes
have the same view of the system as in the first scenario. Therefore they can
go through the same execution of the protocol and decide on 0 at T,, thus
violating the validity requirement. 1

We can still obtain a reasonable notion of reliable broadcast if, in the
case of a faulty transmitter, we allow the broadcast not to terminate. The
termination requirement is weakened as follows.

Weak termination: if the transmitter is correct then all correct
processes eventually decide; if the transmitter is faulty, either all correct
processes eventually decide, or none of them ever decides.

THEOREM 5. In asynchronous systems, Byzantine Generals protocols with
weak termination are possible if and only if t < n/3.

Proof: If t < n/3, then the broadcast primitive of Fig. 1 is a weak ter-
mination Byzantine Generals protocol.

Suppose that there is a r-resilient Byzantine Generals protocol for
t 2 n/3. We can partition the processes into three disjoint sets: A, B, and C,
each of size t or less. Let the transmitter be in A and consider the following
scenarios:

1. The processes in A and B are correct, and the transmitter sends O-
messages. The processes in C are faulty, and they do not send any messages
during the protocol. Since the transmitter is correct and there are at most t
faulty processes, the processes in A and B must agree on 0 within some
time T,.

2. Only the transmitter is faulty. It sends O-messages to processes in
A and B, and l-messages to processes in C. The messages from C are
delayed and not received until after T,. The processes in A and B have the

same view of the system as in scenario 1 and therefore must agree on 0 at
time To.

In a similar fashion we can construct a third scenario with the following
properties:

3. Only the transmitter is faulty. It sends l-messages to A and C, and
O-messages to B. Messages from B are delayed and not received until after
T, . At time T, the processes in A and C agree on 1.

Combining scenarios 2 and 3 yields scenario 4 and a contradiction.

BYZANTINE AGREEMENT PROTOCOLS 143

4. The processes in A are faulty, the processes in B and C are correct.
The processes in A send messages to processes in B as in scenario 2, and to
processes in C as in scenario 3. All messages between processes in B and
processes in C are delayed and not received until after max(r,,, T,). In this
scenario, at time max(T,, T,), the processes in B will agree on 0 and the
processes in C will agree on 1, a contradiction. 1

RECEIVED September 19. 1984; ACCEPTED April 1987

REFERENCES

BEN-OR M. (1983). Another advantage of free choice: Completely asynchronous agreement
protocols, in “Proceedings 2nd ACM Symposium on Principles of Distributed Computing.
Montreal, Canada, August 1983,” pp. 27-30.

BRACHA, G., AND TOUEG. S. (1985), Resilient consensus protocols, J. Assoc. Comput. Mach.
32, No. 2, 824-840.

BRACHA, G. (1984), An n/3 resilient consensus protocol, in “Proceedings, 3rd Symposium on
Principles of Distributed Computing, pp. 157-164.

FISCHER, M. J.. LYNCH, N. A., AND PATERSON. M. S. (1985). Impossibility of distributed con-
sensus with one faulty process, J. Assoc. Comput. Mach. 32, No. 2, 374-382.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. (1982), The Byzantine Generals problem, ACM
Transactions on Programming Languages and Systems, vol. 4, no. 3. July 1982,
pp. 382401.

PEASE, M., SHOSTAK, R., AND LAMPORT. L. (1980), Reaching agreement in the presence of
faults, J. Assoc. Comput. Mach. 21, No. 2, 228-234.

RABIN, M. (1983), Randomized Byzantine Generals, in “Proceedings. 24th Symposium on
Foundations of Computer Science, Tuscan, Arizona, Nov. 1983,” pp. 403409.

SRIKANTH, T. K., AND TOUEG, S. (1984), “Byzantine Agreement Made Simple: Simulating
Authenthication without Signatures,” Tech. Rep. 84-623. Department of Computer
Science, Cornell University, Ithaca, New York, July.

TOUEG, S. (1984), Randomized asynchronous Byzantine agreement, in “Proceedings, 3rd
Symposium on Principles of Distributed Computing, Vancouver, Canada, August 1984,”
pp. 163-178.

TOUEG. S.. PERRY, K. J.. AND SRIKANTH, T. K. (1985), A simple and efficient Byzantine
Generals algorithm with early stopping, in “Proceedings, 4th Symposium on Principles of
Distributed Computing, Canada, August 1985.

