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Abstract

Reliable broadcast protocols are a fundamental building block for implementing replica-
tion in fault-tolerant distributed systems. This paper addresses secure service replication
in an asynchronous environment with a static set of servers, where a malicious adversary
may corrupt up to a threshold of servers and controls the network. We develop a formal
model using concepts from modern cryptography, present modular definitions for several
broadcast problems, including reliable, atomic, and secure causal broadcast, and present
protocols implementing them. Reliable broadcast is a basic primitive, also known as the
Byzantine generals problem, providing agreement on a delivered message. Atomic broad-
cast imposes additionally a total order on all delivered messages. We present a randomized
atomic broadcast protocol based on a new, efficient multi-valued asynchronous Byzantine
agreement primitive with an external validity condition. Apparently, no such efficient asyn-
chronous atomic broadcast protocol maintaining liveness and safety in the Byzantine model
has appeared previously in the literature. Secure causal broadcast extends atomic broad-
cast by encryption to guarantee a causal order among the delivered messages. Threshold-
cryptographic protocols for signatures, encryption, and coin-tossing also play an important
role.

∗Frank Petzold has since left IBM and can be reached at petzold@hepe.com.
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1 Introduction

Broadcast protocols are a fundamental building block for fault-tolerant distributed systems.
A group of servers can offer some service in a fault-tolerant way by using the state machine
replication technique, which will mask the failure of any individual server or a fraction of
them. In the model with Byzantine faults considered here, faulty servers may exhibit arbitrary
behavior or even be controlled by an adversary.

In this paper, we present a modular approach for building robust broadcast protocols that
provide reliability (all servers deliver the same messages), atomicity (a total order on the deliv-
ered messages), and secure causality (a notion that ensures no dishonest server sees a message
before it is scheduled by the system). An important building block is a new protocol for
multi-valued Byzantine agreement with “external validation.” Our focus is on methods for
distributing secure, trusted services on the Internet with the goal of increasing their availability
and security. Cryptographic operations are exploited to a greater extent than previously for
such protocols because we consider them to be relatively cheap, in particular compared to the
message latency on the Internet.

We do not make any timing assumptions and work in a purely asynchronous model with a
static set of servers and no probabilistic assumptions about message delays. Our protocols rely
on a trusted dealer that is used once to set up the system, but they do not use any additional
external constructs later (such as failure detectors or stability mechanisms). We view this as
the standard cryptographic model for a distributed system with Byzantine faults. These choices
maintain the safety of the service even if the network is temporarily disrupted. This model also
avoids the problem of having to assume synchrony properties and to fix timeout values for a
network that is controlled by an adversary; such choices are difficult to justify if safety and also
security depend on them.

Despite the practical appeal of the asynchronous model, not much research has concentrated
on developing efficient asynchronous protocols or implementing practical systems that need
consensus or Byzantine agreement. Often, developers of practical systems avoid the approach
because of the result of Fischer, Lynch, and Paterson [17], which shows that consensus is
not reachable by protocols that use an a priori bounded number of rounds, even with crash
failures only. But the implications of this result should not be overemphasized. In particular,
there are randomized solutions that use only a constant expected number of rounds to reach
agreement [35, 8, 4]. Moreover, by employing modern, efficient cryptographic techniques, this
approach has recently been extended to a practical yet provably secure protocol for Byzantine
agreement in the cryptographic model that withstands the maximal possible corruption [7].

The basic broadcast protocols (following Bracha and Toueg [6]) are reliable broadcast, which
ensures that all servers deliver the same messages, and a variation of it that we call consistent
broadcast, which only provides agreement among the actually delivered messages. Consistent
broadcast is particularly useful in connection with a verifiability property for the delivered
messages, which ensures that a party can transfer a “proof of delivery” to another party in a
single piece of information. We describe message- and communication-efficient implementations
of reliable and consistent broadcast based on cryptographic techniques, such as digital signatures
and threshold signatures. Both of these broadcast primitives do not ensure agreement on
messages from faulty senders, however, for which a Byzantine agreement protocol is needed.

The efficient randomized agreement protocols mentioned before work only for binary deci-
sions (or for decisions on values from small sets). In order to build distributed secure applica-
tions, this is not sufficient. One also needs agreement on values from large sets, in particular for
ordering multiple messages. We propose a new multi-valued Byzantine agreement protocol with
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an external validity condition and show how it can be used for implementing atomic broadcast.
External validity ensures that the decision value is acceptable to the particular application that
requests agreement; this corrects a drawback of earlier agreement protocols for multi-valued
agreement, which could decide on illegal values. Both protocols use digital signatures and
additional cryptographic techniques.

The multi-valued Byzantine agreement protocol invokes only a constant number of binary
Byzantine agreement sub-protocols on average and achieves this by using a cryptographic com-
mon coin protocol in a novel way. It withstands the maximal possible corruption of up to one
third of the parties and has expected quadratic message complexity (in the number of parties),
which is essentially optimal.

Our atomic broadcast protocol guarantees that a message from an honest party cannot be
delayed arbitrarily by an adversary as soon as a minimum number of honest parties are aware of
that message. The protocol invokes one multi-valued Byzantine agreement per batch of payload
messages that is delivered. An analogous reduction of atomic broadcast to consensus in the
crash-fault model has been described by Chandra and Toueg [10], but it cannot be directly
transferred to the Byzantine setting.

We also define and implement a variation of atomic broadcast called secure causal atomic
broadcast. This is a robust atomic broadcast protocol that tolerates a Byzantine adversary
and also provides secrecy for messages up to the moment at which they are guaranteed to be
delivered. Thus, client requests to a trusted service using this broadcast remain confidential
until they are answered by the service. This is crucial in our asynchronous environment for
applying the state machine replication method to services that involve confidential data.

Secure causal atomic broadcast works by combining an atomic broadcast protocol with
robust threshold decryption. The notion and a heuristic protocol were proposed by Reiter
and Birman [39], who called it “secure atomic broadcast” and also introduced the term “input
causality” for its properties. Recent progress in threshold cryptography allows us to present an
efficient robust protocol together with a security proof in the appropriate formal models from
cryptography.

In accordance with the comprehensive survey of fault-tolerant broadcasts by Hadzilacos
and Toueg [21], we define and implement our protocols in a modular way, with reliable and
consistent broadcasts and Byzantine agreement as primitives. This leads to the following layered
architecture:

Secure Causal Atomic Broadcast

Atomic Broadcast

Multi-valued Byzantine Agreement

Broadcast Primitives Byzantine Agreement

Important for the presentation of our broadcast protocols is our formal model of a modular
protocol architecture, where a number of potentially corrupted parties communicate over an
insecure, asynchronous network; it uses complexity-theoretic concepts from modern cryptogra-
phy. This makes it possible to easily integrate the formal notions for encryption, signatures, and
other cryptographic tools with distributed protocols. The model allows for quantitative state-
ments about the running time and the complexity of protocols; the essence of our definition is
to bound the number of steps taken by participants on behalf of a protocol independently from
network behavior. In view of the growing importance of cryptography for secure distributed
protocols, a unified formal model for both is a contribution that may be of independent interest.
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1.1 Related Work

The use of cryptographic methods for maintaining consistent state in a distributed system has
a long history and originates with the seminal work of Pease, Shostak, and Lamport [33]; Dolev
and Strong [14] derive lower bounds for protocols that use authentication. However, much
of the early work on Byzantine agreement predates the development of robust and efficient
cryptographic protocols and the adequate formal models, from which we benefit here.

Chandra and Toueg [10, p. 248] mention that Byzantine agreement and atomic broadcast
are equivalent in asynchronous systems, but do not give any further details. In fact, we are
not aware of any previous description of a protocol for asynchronous atomic broadcast with
Byzantine faults in the literature.

A large body of research in distributed systems focuses on view-based group communication
systems like Isis, Transis, or Horus for state machine replication [41] in the crash-fault model
(see the overview in [34]). Such systems provide the abstraction of a process group, which may
change over time. They guarantee certain synchrony properties among group members so that
they all see the same messages; Vitenberg et al. [44] survey and compare various specifications
found in the literature and implemented in practical systems.

Rampart [37, 38] is the only one of them that tolerates arbitrary (Byzantine) failures. It
also uses cryptography for efficient reliable and atomic broadcasts [36], but solves a technically
different problem than the one we address here: As Rampart builds on a membership protocol to
agree dynamically on the group’s composition, it cannot guarantee an honest majority within
the group when facing an adversary that completely controls communication. Because the
maintenance of safety is the primary application of our protocols for trusted services, such
behavior cannot be tolerated and we have to use more expensive agreement methods.

Another class of protocols circumvent the impossibility of consensus in asynchronous envi-
ronments by assuming a probabilistic behavior of the network links [6, 29, 31]. In particular,
Moser and Melliar-Smith [31] present algorithms to obtain a total order from a partial order
imposed by an underlying communication system. However, this model is not suitable for ap-
plications that need high security guarantees because such assumptions are rather difficult to
justify in practice.

Castro and Liskov [9] describe a practical algorithm for state-machine replication that main-
tains safety despite Byzantine faults and its implementation for realizing a fault-tolerant dis-
tributed file system. Since their protocols are deterministic, however, this approach cannot
ensure liveness at the same time—at least not without making certain timing assumptions.

SecureRing [22] and the very recent work of Doudou, Garbinato, and Guerraoui [15] are two
examples of atomic broadcast protocols that rely on failure detectors in the Byzantine model.
They encapsulate all time-dependent aspects in the abstract notion of a failure detector and
permit clean, deterministic protocols. However, most implementations of failure detectors will
use timeouts and actually suffer from some of the problems mentioned above. It also seems that
Byzantine failure detectors are not yet well enough understood to allow for precise definitions.

In summary, we think the cryptographic model with randomized Byzantine agreement is
both practically and theoretically attractive, although it seems to have been somewhat over-
looked in the past. The fact that randomized agreement protocols may not terminate with
non-zero probability does not matter because this probability is negligible. Moreover, if a
protocol uses authentication, digital signatures, or any cryptography at all, and the practical
protocols mentioned above do so, a negligible probability of failure cannot be ruled out anyway.
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1.2 Organization of the Paper

The remainder of the paper starts with a description of our cryptographic system model in
Section 2, where also the necessary cryptographic primitives are introduced. The paper contin-
ues with definitions and protocols for reliable broadcast and consistent broadcast in Section 3.
Section 4 introduces the notion of validated Byzantine agreement and presents two protocols for
multi-valued validated Byzantine agreement. The definition and a protocol for atomic broadcast
are given in Section 5, and for secure causal atomic broadcast in Section 6.

2 Model

This section describes a formal model for our modular protocol architecture, where a number
of parties communicate over an insecure, asynchronous network, and where an adversary may
corrupt some of them.

Our model differs in two respects from other models traditionally used in distributed systems
with Byzantine faults:

1. In order to use the proof techniques of complexity-based cryptography [18], our model
is computational : all parties and the adversary are constrained to perform only feasible,
i.e., polynomial-time, computations. This is necessary for using formal notions from
cryptography in a meaningful way.

2. We make no assumptions about the network at all and leave it under complete control of
the adversary. Our protocols work only to the extent that the adversary delivers messages
faithfully. In short, the network is the adversary.

The differences become most apparent in the treatment of termination, for which we use more
concrete conditions that together imply the traditional notion of “eventual” termination.

We define termination by bounding a statistic measuring the amount of work that hon-
est, uncorrupted parties do on behalf of a protocol; in particular, we use the communication
complexity of a protocol for this purpose. Since the specification of a protocol requires certain
things to happen under the condition that all protocol messages have been delivered, bound-
ing the length (and also the number) of protocol messages generated by uncorrupted parties
ensures that the protocol has actually terminated under this condition. In cryptography one
proves security with respect to all polynomial-time adversaries, and we adopt this model here
as well. Our notion of an efficient (deterministic) protocol requires that the statistic is bounded
by a fixed polynomial, which is independent of the adversary. As we rely on randomization (for
Byzantine agreement as well as for other things), we also define a corresponding probabilistic
bound for randomized protocols; from this a bound on the expected running time of a protocol
can be derived. Both of our notions are closed under modular composition of protocols, which
is not trivial for randomized protocols.

Among the many established formal models for asynchronous distributed protocols, the I/O
automata model of Lynch and Tuttle [26, 28, 27] seems to be the most general one. It has also
been extended to allow for modeling of randomized protocols. But even though authentication
and digital signatures have been used before in secure distributed protocols, apparently no
adequate formal model has integrated both approaches before [27, p. 115].
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2.1 Basic System Model

The security parameter of our computational security model is denoted by k. A function ε(k)
is called negligible if for all c > 0 there exists a k0 such that ε(k) < 1

kc for all k > k0. We
will consider negligible functions also in other parameters than in k, but we assume that the
parameter of a negligible function is k if not explicitly mentioned otherwise. In this sense, a
“negligible quantity” is a negligible function in the security parameter k. As k is sometimes
not mentioned in other contexts either, keep in mind that all system parameters are bounded
by polynomials in k.

2.1.1 Parties and Protocols

Multi-Party Protocols. An n-party protocol consists of a collection of n parties, P1, . . . , Pn,
which are probabilistic interactive Turing machines that run in polynomial time (in k). Such
a machine has two dedicated interfaces for reading incoming messages and writing outgoing
messages. There is also an initialization algorithm, which is run by an additional party called
the dealer; on input k, n, and t, it generates the state information that is used to initialize each
party. For simplicity, assume n ≤ k.

After initialization, a party Pi may be activated repeatedly with some input message. It
will carry out some computation, update its state, possibly generate some output messages,
and wait for the next activation.

We leave it to the adversary to choose n and t, but a specific protocol might impose its own
restrictions (e.g., t < n/3). We can assume that the dealer includes these values, as well as the
index i, in the initial state of Pi.

Our model includes a public-key infrastructure for digital signatures, i.e., the dealer gener-
ates a key pair for a digital signature scheme S for each party, and includes in the initial state
of each party its private key and the public keys of all parties. The dealer initializes a fixed
number of threshold cryptosystems as required by the implemented protocols.

The dealer may also generate a public output for information associated with the n-party
protocol; this information may be useful for clients of a replicated service that is implemented
by the n-party protocol.

Executions and the Adversary. As our network is insecure and asynchronous, protocol
execution is defined entirely via the adversary. The adversary is a polynomial-time interactive
Turing machine that schedules and delivers all messages and corrupts some parties.

After the initial setup phase, the adversary repeatedly activates a party with some input
message and waits for the party to generate some output message(s). The output is given to
the adversary and perhaps indicates to whom these messages should be sent, and the adversary
may choose to deliver these messages faithfully at some time. But in general, the adversary
chooses to deliver any message it wants, or no message at all; we sometimes impose additional
restrictions on the adversary’s behavior, however.

The adversary also corrupts t parties. W.l.o.g. any adversary that corrupts fewer than t
parties can be converted into one that corrupts exactly t parties. This simplification seems
justified for distributed systems with Byzantine faults where one cannot rely on the actions of
a single, potentially corrupted party; all our intended applications are be based on the behavior
of (a majority of) the uncorrupted parties.

One distinguishes between static and adaptive corruptions in cryptography: in the static
corruption model, the adversary must decide whom to corrupt independently of the execution
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of the system, whereas in the adaptive corruption model, the adversary can adaptively choose
whom to corrupt as the attack is ongoing, based on information it has accumulated so far.
We adopt a static adversary in this work for using the threshold coin-tossing scheme and the
Byzantine agreement protocol of Cachin, Kursawe, and Shoup [7], the threshold cryptosystem
of Shoup and Gennaro [43], and the threshold signature scheme of Shoup [42]. All of these
assume static corruptions. However, we believe that the protocols described here generalize
immediately to adaptive security, given such primitives with adaptive security.

The adversary receives the initial state of the corrupted parties as produced by the dealer.
Otherwise, the corrupted parties are simply absorbed into the adversary: we do not regard
them as system components. Uncorrupted parties are called honest.

Our formal model leaves control over the application interface for invoking broadcasts and
starting agreement protocols up to the adversary. The protocol definitions merely state that if
the adversary invokes the protocol in a certain way—in the same way an intended application
would do—then the protocol should satisfy some specific conditions. This reflects that applica-
tions might be partially influenced by an adversary, which might cause some security problems
if this is not allowed. For simplicity, this application program interface is mapped onto the
single messaging interface, as described below.

Modular Protocol Architecture. We describe a modular protocol architecture, in which
multiple broadcasts and transactions may execute in parallel. These protocol instances run
concurrently and may also invoke other protocol instances on their behalf as sub-protocols.
The dynamic relation between all concurrently running protocol instances is given by a directed
acyclic graph in which every sub-protocol points to its parent. The “root” protocols with no
parents represent instances directly invoked by a user application; in our formal model, they
are invoked by the adversary. All other protocol instances are invoked as sub-protocols of some
already running parent instance.

To identify protocol instances, we assume that each instance is associated with a unique
tag ID . The value ID is an arbitrary bit string whose structure and meaning are determined
by a particular protocol and application; in our formal model, the tag of the root instances
is chosen by the adversary because the adversary invokes them. Sub-protocols are identified
by hierarchical tags of the form ID |ID ′| . . . . The tag value ID |ID ′ typically identifies a sub-
protocol of the parent protocol instance ID and is determined by the parent. The adversary
may not introduce a new tag on its own if this extends any previously introduced tag, i.e., the
set of tags specified for the root instances must be prefix-free.

2.1.2 Communication

Messages. The protocols are described in terms of a single communication interface to which
the adversary delivers messages. Each party runs an internal scheduler that delivers messages to
the protocol instance associated with the corresponding ID . The message interface is used in two
different ways, however: to send and to receive messages via the network and as a placeholder
for local invocation of sub-protocols. Syntactically, invoking a sub-protocol appears as if it
were a request of the adversary in our formal model, as mentioned before. Since our protocol
specifications guarantee certain behavior when requests come from an arbitrary adversary, an
application using a sub-protocol can benefit from this universality, as long as it meets the
requirements in the respective specification. The detailed mechanism for composing protocols
is part of the scheduler described below.
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There are three different types of messages: input actions, output actions, and protocol
(implementation) messages.

Input and output actions represent local events; they provide local input or carry local
output to or from a protocol instance, which might be a sub-protocol of an already running
instance. On the “protocol stack” of the layered architecture, input and output actions travel
vertically: inputs “down” to sub-protocols and outputs “up” to higher-layer protocols.

All other messages are protocol messages, generated and processed by the protocol imple-
mentation; they are intended for the peer instances running at other parties on the same level
of the stack (directed “horizontally”). Protocol messages are internal implementation messages
and they are distinct from the messages or requests actually disseminated as payloads of the
broadcast protocols; those messages are sometimes explicitly called payload messages.

An input action is a message of the form

(ID , in, action, . . . ),

where action is specific to the protocol and followed by arbitrary data. Input actions represent
local invocations of a protocol, either as a root protocol instance by the adversary or as a sub-
protocol of an already running protocol instance. An input action is used to request a service
from the protocol instance. There is a special input action open, represented by

(ID , in, open, type),

which must precede any other input action with tag ID . When Pi processes such a message with
tag ID for the first time, it initializes the instance; type specifies the type of the protocol being
initialized. We say that Pi has opened a “channel” with tag ID or activated a “transaction”
with tag ID . (Although it is a crucial element, we usually assume that it occurs implicitly
before the first regular input action.)

An output action is a message of the form

(ID , out, action, . . . ),

where action is again dependent on the particular service. These messages typically contain an
output from the protocol instance to the calling entity. There is a special output action halt,
represented by

(ID , out, halt),

after which no further messages tagged with ID are processed by the party. When Pi generates
such a message with tag ID , we say that Pi has halted instance ID .

We stress that in a real protocol implementation, input and output actions both do not
involve any real network communication and will be mapped onto local events being generated
or processed by the calling entity. But in the formal model at least some of them are generated
and received by the adversary.

The third type of message generated by Pi are protocol messages of the form

(ID , type, . . . )

with type 6∈ {in, out}. The idea is that such messages are delivered by the network to other
parties, where they are processed by the corresponding protocol instance.

For simplicity, we shall not include origin and destination addresses in the body of proto-
col messages, and assume that this information is implicitly available to the receiving party.
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Furthermore, we assume that all protocol messages are authenticated, which restricts the adver-
sary’s behavior as follows: if Pi and Pj are honest and the adversary delivers a protocol message
M to Pj indicating that it was sent by Pi, then M was generated by Pi at some prior point in
time. It is reasonable to build authentication into our model because it can be implemented
very cheaply using standard symmetric-key cryptographic techniques [30].

Internal Scheduling. When a party is activated by the adversary, the incoming message is
appended to a local message buffer and the internal scheduler is invoked. It delivers the message
to the protocol instance associated with the corresponding ID . If no protocol associated with
ID is running yet, the scheduler buffers all arriving messages until a corresponding instance has
been opened. If the protocol instance has already halted, the message is discarded.

The applicable messages in the buffer are delivered to the protocol instances as follows. For
each input action open with a tag ID that has not been opened before, a new protocol instance
with the specified ID is initialized and the scheduler remembers that it was started over the
network (i.e., by the adversary).

Each opened protocol instance executes as a separate thread, but at any point in time, at
most one of them is active. Upon activation of a party, all protocol instances are in wait states.
An instance enters this state by executing a wait for operation, specifying a condition defined on
the message buffer and other local state variables under which it processes a message. Waiting
instances become ready as soon as their condition is satisfied. Then one of the ready instances is
scheduled to execute (arbitrarily, if more than one are ready), subject to the following restriction:
An instance ID is not scheduled if any of its children in the dynamic protocol tree are also ready.
In this way, instance ID is scheduled only after any other ready instance whose tag contains
ID as a proper prefix.

When a protocol instance is scheduled, it processes the message, potentially generating
some messages, until it enters the wait state again by issuing a wait for operation, or until it
performs an explicit halt operation. The scheduler translates halt into the output action halt
for tag ID and removes the instance ID (further messages tagged with ID are ignored).

The scheduler treats messages generated by an instance ID as follows. Protocol messages are
simply written to the outgoing communication interface. For each input action open, however,
a new protocol instance with the specified child ID is initialized, as if the message came from
the network. The scheduler remembers the ID of the parent instance; all subsequent input
actions from the parent addressed to the child are not written out to the network, but included
directly in the buffer. Each output action of a sub-protocol instance ID is mapped directly
into a corresponding internal message for its parent; output actions of a root protocol instance
are written to the outgoing communication interface. These steps allow local activation of sub-
protocols and local processing of their output to be described in terms of the single message
interface.

The scheduler continues to deliver messages to waiting protocol instances in an arbitrary
order, until the buffer contains no more applicable messages. When no more instance are ready,
control is returned to the adversary. Some messages may remain in the buffer until the next
activation because no protocol was waiting for them. Correctness and security of a protocol
should not depend on the particular implementation of the scheduler, as long as it obeys these
rules.

Our protocol descriptions are mostly written in reactive style, consisting simply of message
handlers for which a global wait for operation is issued implicitly. Upon receiving an applicable
message, the handler will execute some instructions, update its state, and may also perform a
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wait for operation which will block until the appropriate messages have arrived. If an instance
ID waits for messages tagged with its own ID , it is simply a shorthand notation for the
corresponding message handlers. But if an instance ID waits for output from a child instance
(that has previously been opened), the scheduler delivers the output actions of the child to the
parent, as mentioned before. We make the assumption that an instance waiting for output
from an uninitialized instance triggers implicitly a corresponding open action, which initializes
the instance.

2.1.3 Quantitative Aspects

Defining Termination. In the model with computationally bounded participants considered
here, we cannot apply the notion of “eventual” termination traditionally used in distributed
computing, which allows for infinite protocol runs and would make formal models of crypto-
graphic methods with computationally bounded adversaries meaningless. Instead, we define
termination of a protocol instance only to the extent that the adversary faithfully delivers mes-
sages among the honest parties (analogous to [7]). In order to bound the adversary’s running
time, we quantify the amount of work done by honest parties on behalf of a protocol. We
measure the efficiency of a protocol for this purpose. Combined with a liveness condition (such
as “validity”), restricting the amount of work implies eventual termination in the conventional
sense. For example, this will rule out trivial protocols that never terminate but always cause
some work to be done without making progress.

Formally, our efficiency condition is based on a protocol statistic X measuring the work done
by honest parties in a multi-party protocol execution, such as “useful” computation steps or the
number of generated message bits. A protocol statistic is a family of real-valued, non-negative
random variables {XA(k)}, parameterized by adversary A and security parameter k, where
each XA(k) is a discrete random variable induced by the coin flips of the dealer, the honest
parties, and adversary A for security parameter k. We call X a bounded protocol statistic if for
all adversaries A, there exists a polynomial pA such that for all k ≥ 0, it holds XA(k) ≤ pA(k),
i.e., the statistic is polynomial in the security parameter, but depending on the adversary.

The key to defining efficiency lies in “uniformly” bounding a protocol statistic, independent
of the adversary—such a bound should only depend on the particular protocol implementation.
As we consider deterministic and randomized protocols (which may not always terminate after
a polynomial number of steps), we introduce two corresponding notions for such uniformly
bounded statistics.

Definition 1 (Uniformly Bounded Statistics). Let X be a bounded protocol statistic. We
say that

1. X is uniformly bounded (by T ) if there exists a fixed polynomial T (k) such that for all
adversaries A, there exists a negligible function εA(k) such that for all k ≥ 0,

Pr[XA(k) > T (k)] ≤ εA(k);

2. X is probabilistically uniformly bounded (by T ) if there exists a fixed polynomial T (k) and
a fixed negligible function δ(l) such that for all adversaries A, there exists a negligible
function εA(k) such that for all l ≥ 0 and k ≥ 0,

Pr[X(k) > lT (k)] ≤ δ(l) + εA(k).
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A probabilistically uniformly bounded statistic is allowed to exceed the uniform bound
with non-negligible probability in the security parameter, but this probability must again be
negligible, independent of the adversary. If X probabilistically uniformly bounded by T , then
its expected value is bounded by T times a constant that is independent of the adversary, as
shown next.

Lemma 1. Suppose X is a statistic of a multi-party protocol that is probabilistically uniformly
bounded by T . Then there exists a constant c such that for all adversaries A, the expected value
of XA(k) is bounded by cT (k) + ε′A(k), where ε′A is a negligible function.

Proof. Recall that a bounded protocol statistic is bounded by some polynomial qA(k) in the
security parameter, depending on the adversary A; thus the random variable XA(k) exceeds
qA(k) with probability zero.

Set X ′A(k) = XA(k)/T (k); it follows X ′A(k) ≤ q′A(k) for some polynomial q′A(k). Because
XA(k) is probabilistically uniformly bounded, we know that there exist negligible functions δ(l)
and εA(k) such that Pr[X ′A(k) > l] ≤ δ(l) + εA(k). Together with E[Y ] ≤

∑
l≥0 Pr[Y > l] for

any non-negative discrete random variable Y , it follows

E[X ′A(k)] ≤
∑
l≥0

Pr[X ′A(k) > l] =
q′A(k)∑
l=0

Pr[X ′A(k) > l] ≤
q′A(k)∑
l=0

(
δ(l) + εA(k)

)
.

Now fix δ to a function whose sum converges to a constant, say δ(l) = l−2. We have

q′A(k)∑
l=0

(
δ(l) + εA(k)

)
≤

q′A(k)∑
l=0

l−2 + q′A(k)εA(k) ≤ c0 + q′A(k)εA(k)

for a constant c0 that is independent of the adversary. Because εA is negligible and by the
linearity of expectation, this implies that E[XA(k)] = c0T (k)+ε′A(k) for some negligible ε′A.

A key property of these notions is that they lend themselves to the composition of protocols
by way of the following lemma, whose proof is tedious but straightforward.

Lemma 2. Fix any polynomial F (x1, . . . , xf ), independent of adversary. If X1, . . . , Xf are
[probabilistically] uniformly bounded statistics, then F (X1, . . . , Xf ) is also a [probabilistically]
uniformly bounded statistic.

Communication and Message Complexity. An appropriate statistic in the above sense is
the communication complexity of a multi-protocol; it is used by our model to define termination.
Formally, the communication complexity is equal to the bit length of all associated protocol
messages that honest parties generate. Which protocol messages are associated to a particular
instance ID will vary according to the protocol type and will be noted explicitly when defining
a protocol. Typically, this includes all messages with the tag ID or any tag starting with
ID | . . . ; through the second form, also messages generated by sub-protocols on behalf of the
calling protocol can be associated to an instance ID . Our protocol architecture ensures that all
messages generated by honest parties are associated to some protocol.

Restricting the communication complexity to messages generated by honest parties seems
the best one can say about a protocol in a Byzantine environment; the adversary can always
deliver “junk” protocol messages to honest parties, which require some work to be read. Network
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bandwidth is an apparent resource that communication protocols consume, thus, measuring it
seems adequate.

Alternatively, one could bound the bit length of all distinct messages delivered to one honest
party that were generated by another honest party. But this is bounded by the communication
complexity in the sense above.

As it is, there is no a priori restriction on the size of a payload message in our formal
model. However, the communication complexity of a broadcast protocol depends on the length
of such a message. For simplicity, we will therefore assume that there exists a fixed polynomial
upper bound on the length of all payload messages that are contained in any input or output
action message of any honest party. From this, and from the description of a particular protocol
implementation, one can derive an upper bound on the maximal length of any protocol message.

Another appropriate statistic for a certain class of protocols (like Byzantine agreement, as
used in [7]) is the message complexity, defined as the total number of all associated protocol
messages that honest parties generate.

If the communication complexity (or also the message complexity) is uniformly bounded,
the adversary could quickly make all honest parties terminate the protocol instance, but it is
not forced to do so.

Modular Protocol Composition. Using the message complexity (or communication com-
plexity) as a statistic has the advantage that it is closed under the modular composition of
protocols as follows. According to our architecture, a higher-level protocol may invoke a sub-
protocol to carry out a certain task; this appears as a one or more input actions generated
by the higher-level protocol, which will start the sub-protocol(s) as described above. Suppose
for the moment that sub-protocols are implemented by a distributed oracle available to every
party, which provides the service of the sub-protocols in an ideal and instantaneous way. We
call such a protocol an oracle protocol. A party invokes the protocol oracle by generating a
suitable input action message, so that this counts as one towards message complexity.

Consider two multi-party oracle protocols A and B with respective message complexities XA

and XB that are both [probabilistically] uniformly bounded. Suppose that the oracle protocol A
uses an oracle for the task provided by B. Since B is implemented by the oracle, XA counts
every invocation of B by any honest party as one unit.

If we replace every oracle call on behalf of A to B by actually invoking B according to our
general system model, we obtain a composed protocol AB with message complexity XAB. This
counts all messages that protocol A generates directly and those generated by the instances of B
started on behalf of A. But because XA and XB are [probabilistically] uniformly bounded, there
exist the appropriate polynomial bounds on the message complexities of A and B and also on
the number of activations of protocol B (because message complexity bounds also the number
of sub-protocol invocations). Thus, by Lemma 2, XAB is also [probabilistically] uniformly
bounded.

In other words, if we compose two, or any constant number of protocols with [probabilis-
tically] uniformly bounded message complexities (some of them being oracle protocols), we
obtain another protocol with [probabilistically] uniformly bounded message complexity. This
extends trivially to communication complexity and, in fact, to any statistic in which invoking
a sub-protocol is counted as one cost unit.

Lemma 3. [Probabilistically] uniformly bounded communication complexity is closed under the
modular composition of protocols.
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This is an important property of our notion of termination for randomized protocols and
justifies the way in which we have defined it. If one would merely consider the expected value
of a statistic for a randomized protocol, one could not draw such conclusions. For example,
combining a protocol from which we only know that its expected number of rounds is constant
with another one having the same property would not guarantee that the total expected number
of rounds is also constant.

2.2 Byzantine Agreement

We give the definition of Byzantine agreement (or consensus in the crash-fault model) here as
it is needed for building atomic broadcast protocols. It can be used to provide agreement on
independent transactions.

The Byzantine agreement protocol is activated when the adversary delivers a message to Pi
of the form

(ID , in, propose, v),

where v ∈ {0, 1}. When this occurs, we say Pi proposes v for transaction ID .
A party terminates the Byzantine agreement protocol (for transaction ID) by generating an

output message of the form
(ID , out, decide, v).

In this case, we say Pi decides v for transaction ID .
Let any message with tag ID or ID | . . . that is generated by an honest party be associated

to the agreement protocol for ID .

Definition 2 (Byzantine agreement). A protocol solves Byzantine agreement if it satisfies
the following conditions except with negligible probability:

Validity: If all honest parties that are activated on a given ID propose v, then any honest
party that terminates for ID decides v.

Agreement: If an honest party decides v for ID , then any honest party that terminates de-
cides v for ID .

Liveness: If all honest parties have been activated on ID and all associated messages have
been delivered, then all honest parties have decided for ID .

Efficiency: For every ID , the communication complexity for ID is probabilistically uniformly
bounded.

This is the usual definition of validity in the literature. In Section 4 we introduce the
weaker notion of external validity that is useful for certain applications. For instance, if initial
values come with validating data (e.g., a digital signature) that establishes their validity in a
particular context, we will require that an honest party may only decide on a value for which it
has the accompanying validating data. Thus, even if all honest parties start with 0, they may
still decide on 1 if they obtain the corresponding validating data for 1 during the agreement
protocol.
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2.3 Cryptographic Primitives

Apart from ordinary digital signature schemes, we use robust, non-interactive threshold signa-
tures, threshold public-key encryption schemes, and a threshold coin-tossing protocol.

We need a collision-free hash function H : {0, 1}∗ → {0, 1}k′ with the property that the
adversary cannot generate two distinct strings x and x′ such that H(x) = H(x′), except with
negligible probability.

Another useful primitive is a cryptographically strong pseudorandom generator [19], denoted
by G : {0, 1}k′′ → {0, 1}∗, that stretches a k′′-bit seed by an arbitrary polynomial factor. G is a
deterministic algorithm with input a random k′′-bit seed such that its output is computationally
indistinguishable from a uniform random string of the same length. In other words, for every
efficient statistical test running in time polynomial in k, the probability that it can distinguish
the output of G with a random seed from truly random bits is negligible.

Many efficient cryptographic schemes, and in particular all the threshold-cryptography pro-
tocols needed below, can be analyzed only in the so-called random-oracle model [1]. This refers
to an idealized world where a hash function has been replaced by a truly random oracle, avail-
able to all participants. Although such proofs provide only a heuristic notion of security, the
model allows to design truly practical protocols that admit a security analysis, which yields
very strong evidence for their security.

2.3.1 Digital Signatures

A digital signature scheme [20] consists of a key generation algorithm, a signing algorithm, and
a verification algorithm. The key generation algorithm takes as input a security parameter, and
outputs a public key/private key pair. The signing algorithm takes as input that private key
and a message m, and produces a signature σ. The verification algorithm takes the public key,
a message m, and a putative signature σ, and outputs a bit that indicates whether it accepts
or rejects the signature. A signature is considered valid if and only if the verification algorithm
accepts. All signatures produced by the signing algorithm must be valid.

The basic security property is unforgeability. The attack scenario is as follows. An adversary
is given the public key, and then requests the signatures on a number of messages, where the
messages themselves may depend on previously obtained signatures. If at the end of the attack,
the adversary can output a message m and a valid signature σ on m, such that m was not
one of the messages whose signature it requested, then the adversary has successfully forged
a signature. Security means that it is computationally infeasible for an adversary to forge a
signature.

2.3.2 Non-Interactive Threshold Signatures

An important tool for our broadcast protocols are non-interactive threshold signatures. More
precisely, we need dual-threshold variations as introduced by Shoup [42] and Cachin, Kursawe,
and Shoup [7]. The basic idea of a dual-threshold signature scheme is that there are n parties,
t of which may be corrupted. The parties hold shares of the secret key of a signature scheme,
and may generate shares of signatures on individual messages. The only requirement is that
κ signature shares are necessary and sufficient to construct a signature, where t < κ ≤ n − t.
(The standard notion of threshold schemes considers only κ = t+ 1.)

More precisely, a non-interactive (n, κ, t)-dual-threshold signature scheme consists of the
following parts:
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– A key generation algorithm with input parameters k, n, κ, and t. It outputs the public
key of the scheme, a private key share for each party, and a local verification key for each
party.

– A signing algorithm with inputs a message, the public key and a private key share. It
outputs a signature share on the submitted message.

– A share verification algorithm with inputs a message, a signature share on that message
from a party Pi, along with the global public key and the local verification key of Pi. It
determines if the signature share is valid.

– A share combining algorithm that takes as input a message and κ valid signature shares on
the message, along with the public key and the verification keys, and (hopefully) outputs
a valid signature on the message.

– A signature verification algorithm that takes as input a message and a signature (generated
by the share-combining algorithm), along with the public key, and determines if the
signature is valid.

The interaction takes place in the basic system model introduced above. During initial-
ization, the dealer runs the key generation algorithm and gives each party the public key, all
local verification keys, and its private key share. The adversary may submit signing requests to
the honest parties for messages of its choice. Upon receiving such a request, a party computes
a signature share for the given message using its private key share. Given κ valid signature
shares from distinct parties on the same message, they may be combined into a signature on
the message.

The two basic security requirements are robustness and non-forgeability. Robustness means
that it is computationally infeasible for an adversary to produce κ valid signature shares such
that the output of the share combining algorithm is not a valid signature. Non-forgeability
means that it is computationally infeasible for the adversary to output a valid signature on a
message that was submitted as a signing request to less than κ− t honest parties.

A practical scheme that satisfies these definitions in the random-oracle model was proposed
by Shoup [42] and is based on RSA [40]. Each signature share has essentially the size of an RSA
signature and the final signature is a standard RSA signature. Our definition of a threshold
signature scheme would also admit the trivial implementation of just using a set of κ ordinary
signatures.

The dual-threshold scheme is used in some of our protocols, where a threshold signature
with κ > t+ 1 provides evidence for the fact that κ− t honest parties have executed some steps
in the protocol. A single-threshold scheme would not work here because although our system
corruption model is static, the adversary may adaptively decide from which honest parties to
request additional signature shares by scheduling messages accordingly.

2.3.3 Non-Interactive Threshold Cryptosystems

We use the definition of non-interactive threshold cryptosystems with security against adap-
tive chosen-ciphertext attacks put forward by Shoup and Gennaro [43]. (For ordinary public-
key cryptosystems, security against adaptive chosen-ciphertext attacks is equivalent to non-
malleability [13].)

A (n, t+ 1)-threshold cryptosystem is given by the following algorithms:
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– A key generation algorithm, taking as input k, n, and t. Outputs are the public key and
a private decryption key for each party.

– An encryption algorithm with inputs the public key, a cleartext message m ∈ {0, 1}∗. The
algorithm outputs a ciphertext c and a label ` ∈ {0, 1}∗.

– A decryption algorithm with inputs the public key, an index i ∈ {1, . . . , n}, the private
key of Pi, a ciphertext c, and a label `. It outputs a decryption share or a special symbol
⊥ if the inputs are invalid.

– A combination algorithm that takes as inputs the public key, a ciphertext c, a label ` and
a list D of decryption shares, of which some may be invalid. If D contains at least t+ 1
valid decryption shares, the algorithm outputs the cleartext m. Otherwise it returns a
special symbol ⊥.

The interaction takes place in the basic system model according to Section 2.1. During
the initialization phase, the dealer runs the key generation algorithm and gives each party the
global public key and its private key share.

Any party may run the encryption algorithm with the public key and a cleartext message
to produce a ciphertext.

For decryption, a party sends the ciphertext together with the label to each party Pi,
who returns a decryption share. Upon receiving enough decryption shares, the decryptor can
combine them in order to obtain the cleartext.

The algorithms ensure that if a ciphertext c of a cleartext m was produced correctly by the
encryption algorithm, then the recovery algorithm yields m with all but negligible probability,
even if at most t decryption shares were not produced by the decryption algorithm with inputs
as specified above. This property is called robustness.

To define security against adaptive chosen ciphertext attacks, consider the following game,
played by the adversary in our basic system model with t statically corrupted parties; the keys
generated by the dealer and given to the corrupted parties are seen by the adversary.

A1. The adversary interacts with the uncorrupted parties in an arbitrary fashion, feeding them
ciphertext/label pairs and obtaining decryption shares.

A2. The adversary chooses two cleartexts, m0 and m1, and gives them to an “encryption
oracle.” The oracle chooses a bit b at random, encrypts mb, and returns the resulting
ciphertext c and label ` to the adversary.

A3. The adversary continues to interact with the uncorrupted parties, feeding them cipher-
text/label pairs (c′, `′) and receiving decryption shares, with the restriction that (c′, `′) 6=
(c, `).

A4. The adversary outputs a bit b̂.

The threshold cryptosystem is called secure against adaptive chosen ciphertext attack if
for any polynomial-time bounded adversary the probability that b = b̂ exceeds 1/2 only by a
negligible quantity.

A practical threshold cryptosystem according to the above definition has been presented by
Shoup and Gennaro [43]. Its security is based on the computational Diffie-Hellman problem [12],
and it works in the random-oracle model; a variation of it is based on the decisional Diffie-
Hellman problem.
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2.3.4 Threshold Coin-Tossing

We also need an (n, t+ 1)-threshold coin-tossing scheme. The basic idea is the same as for the
other threshold primitives, but here the parties hold shares of a pseudorandom function F . It
maps a bit string N , the name of a coin, to its value F (N) ∈ {0, 1}k′′ . We use a generalized coin
that produces k′′ random bits simultaneously; such a coin is also called a distributed pseudo-
random function [32]. The parties may generate shares of a coin value F (N) and t+ 1 shares
of the same coin are both necessary and sufficient to construct the value of that coin. The
generation and verification of coin shares are also non-interactive and we work in the basic
system model of Section 2.1.

During initialization the dealer generates a global verification key, a local verification key
for each party, and a secret key share for each party. The initial state information for each
party consists of its secret key share and all verification keys. The secret keys implicitly define
a function F mapping names to k′′-bit strings.

After the initialization phase, the adversary submits reveal requests to the honest parties for
coins of his choice. Upon receiving such a request, a party outputs a coin share for the given
coin computed from its secret key.

The coin-tossing scheme also specifies two algorithms:

– The share verification algorithm takes as input the name of a coin, a share of this coin
from a party Pi, along with the global verification key and the verification key of Pi, and
determines if the coin share is valid.

– The share combining algorithm takes as input a the name N of a coin and t + 1 valid
shares of N , along with (perhaps) the verification keys, and (hopefully) outputs F (N).

The security requirements are robustness and pseudorandomness. Robustness means that
it is computationally infeasible for an adversary to produce a name N and κ valid shares
of coin N such that the output of the share combining algorithm is not F (N). To define
pseudorandomness, consider the following game, played in the basic system model.

D1. The adversary interacts with the uncorrupted parties in an arbitrary fashion, obtaining
shares for arbitrary coins.

D2. The adversary chooses a coin N for which it has not yet requested a coin share, and gives
it to an “F -oracle.” The oracle chooses a bit b at random, and returns F (N) if b = 0 and
a uniformly random k′′-bit string otherwise.

D3. The adversary continues to interact with the uncorrupted parties and may obtain shares
for arbitrary coins, except for N .

D4. The adversary outputs a bit b̂.

The threshold coin-tossing scheme is pseudorandom if for any polynomial-time bounded
adversary the probability that b = b̂ exceeds 1/2 only by a negligible quantity.

An efficient threshold coin-tossing scheme in the random-oracle model has been presented by
Cachin, Kursawe, and Shoup [7]. Although their implementation produces single-bit outputs,
it can be trivially modified to generate k′′-bit strings, just by using a k′′-bit hash function to
compute the final value. Its security is based on the computational Diffie-Hellman problem in
the random-oracle model. A related scheme for a distributed pseudo-random function, with se-
curity based on the decisional Diffie-Hellman problem, has also been proposed by Naor, Pinkas,
and Reingold [32].

18



3 Broadcast Primitives

In this section, we introduce two broadcast primitives, reliable broadcast and consistent broad-
cast, and present communication-efficient protocols for both. In terms of our definitions, reliable
broadcast (the Byzantine generals problem) appears as an extension of consistent broadcast;
but we introduce reliable broadcast first because it is a well-known primitive. We also introduce
the notion of a verifiable broadcast.

3.1 Reliable Broadcast

Reliable broadcast provides a way for a party to send a message to all other parties. It requires
that all honest parties deliver the same set of messages and that this set includes all messages
broadcast by honest parties, without guaranteeing anything about the order in which messages
are delivered. In the context of arbitrary faults, reliable broadcast is also known as the Byzantine
generals problem [25].

3.1.1 Definition

Broadcasts are parameterized by a tag ID , which can also be thought of as identifying a broad-
cast “channel.” Since many parties can potentially broadcast several payload messages with
the same ID , we augment the tag in a reliable broadcast by the identity of the sender, j, and by
a sequence number s. Then, we restrict the adversary to submit a request for reliable broadcast
tagged with ID .j.s to Pi only if i = j and at most once for every sequence number. These
requirements are easily satisfied in practice by maintaining a message counter. Instances of
reliable broadcast are always identified by ID .j.s so that the simple tag ID alone represents
a “virtual channel” for reliable broadcast; its implementation uses one independent protocol
instance per payload message.

A reliable broadcast protocol is activated when the adversary delivers a message to Pj of
the form

(ID .j.s, in, r-broadcast,m),

with m ∈ {0, 1}∗ and s ∈ N. When this occurs, we say Pj reliably broadcasts m tagged
with ID .j.s, or simply Pj r-broadcasts m. Note that only Pj is activated like this. The other
parties are activated when they perform an explicit open action for instance ID .j.s in their
role as receivers; according to our convention, this occurs for instance when they wait for an
output tagged with ID .j.s.

A party terminates a reliable broadcast of m tagged with ID .j.s by generating an output
message of the form

(ID .j.s, out, r-deliver,m).

In this case, we say Pi reliably delivers m tagged with ID .j.s (or r-delivers for brevity).
We say that all protocol messages which are generated by honest parties have tags with

prefix ID .j.s are associated to the broadcast of m by Pj with sequence number s. Recall that
this defines also the messages contributing to the communication complexity of the protocol
instance ID .j.s.

Definition 3 (Reliable Broadcast). A protocol for reliable broadcast satisfies the following
conditions except with negligible probability:
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Validity: If an honest party has r-broadcast m tagged with ID .j.s, then all honest parties
r-deliver m tagged with ID .j.s, provided all honest parties have been activated on ID .j.s
and the adversary delivers all associated messages.

Consistency: If some honest party r-delivers m tagged with ID .j.s and another honest party
r-delivers m′ tagged with ID .j.s, then m = m′.

Totality: If some honest party r-delivers a message tagged with ID .j.s, then all honest parties
r-deliver some message tagged with ID .j.s, provided all honest parties have been activated
on ID .j.s and the adversary delivers all associated messages.

Integrity: For all ID , senders j, and sequence numbers s, every honest party r-delivers at
most one message m tagged with ID .j.s. Moreover, if all parties follow the protocol, then
m was previously r-broadcast by Pj with sequence number s.

Efficiency: For any ID , sender j, and sequence number s, the communication complexity of
instance ID .j.s is uniformly bounded.

Some remarks on the above definition. Recall the implicit quantification over all polynomial-
time adversaries.

1. Validity ensures the liveness of a protocol, and rules out trivial protocols that do not
generate any messages. One could use an equivalent, but simpler definition here, requiring
that only the sender (and not all honest parties) r-deliver the message; but then one would
have to modify this again to the present form for defining consistent broadcast below.

2. The agreement condition found in traditional definitions is split into consistency and
totality. The reason for separating them is not only that they are distinct properties, but
also that a reliable broadcast without a totality guarantee is a useful notion, as shown
later.

3. The provision that the “adversary delivers all associated messages” is our quantitative
counterpart to the traditional “eventual” delivery assumption. It can be ensured for an
arbitrary adversary as follows. Suppose the adversary halts and there are yet undelivered
protocol messages among honest parties (these can be inferred from a transcript of the
adversary’s interactions). Then using a “benign” scheduler delivering all the undelivered
messages and the newly generated ones, the protocol is run until no more undelivered pro-
tocol messages exist, whereby termination in polynomial time is guaranteed by efficiency
and validity.

4. Integrity may seem weak, since our model assumes authenticated links and we could hope
to get the guarantee in the second clause also with t actually corrupted parties. Indeed,
most reliable broadcast protocols implicitly also authenticate the sender of a message. It
is possible to define the corresponding notion of an authenticated reliable broadcast by
replacing the integrity condition above by the following.

Authenticity: For all ID , senders j, and sequence numbers s, every honest party r-
delivers at most one message m tagged with ID .j.s. Moreover, if Pj is honest, then
m was previously r-broadcast by Pj with sequence number s.
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However, we will not use authenticity in the standard definitions below because only
some of our protocols provide authenticity. In particular, the protocols for reliable and
for consistent broadcast provide authenticity, but not the atomic broadcast protocol.

We should note that an actual implementation of reliable broadcast is not needed by any
of our protocols below. However, we build on the definition of reliable broadcast for defining
other forms of broadcast. Nevertheless, we give a protocol for reliable broadcast in the next
section—for completeness and to illustrate the system model and our definitions.

3.1.2 A Protocol for Reliable Broadcast

Protocol RBC for party Pi and tag ID .j.s

Initialization:

m̄← ⊥; d̄← ⊥
ed ← 0; rd ← 0 (d ∈ {0, 1}k′)

Upon receiving message (ID .j.s, in, r-broadcast,m):
send (ID .j.s, r-send,m) to all parties

Upon receiving message (ID .j.s, r-send,m) from Pl:

if j = l and m̄ = ⊥ then
m̄← m
send (ID .j.s, r-echo,H(m)) to all parties

Upon receiving message (ID .j.s, r-echo, d) from Pl for the first time:

ed ← ed + 1
if ed = n− t and rd ≤ t then

send (ID .j.s, r-ready, d) to all parties

Upon receiving message (ID .j.s, r-ready, d) from Pl for the first time:

rd ← rd + 1
if rd = t+ 1 and ed < n− t then

send (ID .j.s, r-ready, d) to all parties
else if rd = 2t+ 1 then
d̄← d
if H(m̄) 6= d then

send (ID .j.s, r-request) to P1, . . . , P2t+1

wait for a message (ID .j.s, r-answer,m) such that H(m) = d̄
m̄← m

output (ID .j.s, out, r-deliver, m̄)

Upon receiving message (ID .j.s, r-request) from Pl for the first time:

if m̄ 6= ⊥ then
send (ID .j.s, r-answer, m̄) to Pl

Figure 1: Protocol RBC for authenticated reliable broadcast (or the Byzantine generals prob-
lem) adopted from Bracha [5].
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A message-efficient reliable broadcast protocol, denoted RBC, is given in Figure 1; it results from
a small modification of Bracha’s reliable broadcast protocol [5] to reduce the communication
complexity.

Protocol RBC uses the hash of a payload message as a short, but unique representation for
the potentially much longer message. The idea is that the payload is sent only once by the
sender to all parties (similar to [36]). When a party is ready to deliver a payload message but
does not yet know it, it asks an arbitrary subset of 2t + 1 parties for its contents and at least
one of them will answer with the correct value.

In the description of the protocol, recall the global wait for condition for any message
with a matching tag. Let ⊥ denote a special value that cannot be broadcast. To implement
the condition that a particular message from a party is processed only the first time it is
received, one has to maintain the corresponding flags and counters, indexed by the contents of
the message.

Theorem 4. Assuming H is a collision-free hash function, Protocol RBC provides authenti-
cated reliable broadcast for n > 3t.

Proof. Validity is clear for honest senders by inspection of the protocol because all parties receive
the initial r-send message and also 2t+ 1 r-ready messages from honest parties, provided all
associated messages are delivered. It may not hold for faulty senders, though.

For consistency, suppose an honest party Pi has r-delivered m and another honest party
Pi′ has r-delivered m′ 6= m with tag ID .j.s. Then Pi must have received r-ready messages
containing d = H(m) from at least t+1 honest parties; the same holds for Pi′ with d′ = H(m′).
If d = d′, the adversary has created a collision in H. We assume no such collisions occur in the
rest of the proof.

An honest party generates an r-ready message for d only if it has received n − t r-echo
messages containing d or t+1 r-ready messages already containing d. Thus, at least one honest
party has sent an r-ready message containing d upon receiving n− t r-echo messages; at most
t of them are from corrupted parties. Similarly, some honest party must have received n − t
r-echo messages containing d′. Thus, there are at least 2(n− t) ≥ n+ t+ 1 r-echo messages
with tag ID .j.s and at least n − t + 1 among them from honest parties. But no honest party
generates more than one such message by the protocol.

To establish totality, note that if some honest Pi delivers m̄, then it has received the message
(ID .j.s, r-ready, d̄) from 2t+1 different parties. Therefore, at least t+1 honest parties have sent
r-ready with ID .j.s and d̄ = H(m̄), which will be received by all honest parties (assuming the
adversary delivers all messages). Thus, all honest parties will send the corresponding r-ready
message and any other party Pl will receive 2t + 1 of them. If Pl already knows m′ with
H(m′) = d̄, it outputs that.

Otherwise, Pl will send an r-request to 2t+ 1 parties and wait for an r-answer satisfying
H(m′) = d̄. Observe that there is at least one honest party who has sent an r-ready message
containing d̄ upon receiving n − t corresponding r-echo messages. Thus, there are at least
n − 2t honest parties who sent r-echo and know some m′ such that H(m′) = d̄. Sending the
r-request to 2t+ 1 parties ensures that at least one of them receives and answers it, provided
all messages are delivered.

For integrity, the uniqueness of the r-delivered message is clear from the protocol. If the
sender Pj of message with sequence number s is honest, then at most t parties will send r-echo
messages for tag ID .j.s with m′ 6= m. Thus, no uncorrupted party generates an r-ready
message with d different from H(m) and no uncorrupted party outputs m′. Actually, the
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protocol also satisfies authenticity because honest parties process r-send messages only from
the sender indicated by the r-echo message.

It is easy to see that the protocol satisfies efficiency for any sender.

Note that collecting n− t r-echo messages is needed for totality (because r-request mes-
sages are sent to only 2t+1 parties), but for consistency alone, this could be relaxed to dn+t+1

2 e
r-echo messages.

The message complexity of Protocol RBC is O(n2). If messages are delivered faithfully
by a “benign” scheduler and no faults occur, then its communication complexity is only
O(n2k′ + n|m|) for broadcasting a single message m, where k′ is the length of a hash value.
However, the adversary can delay the r-send messages for some parties and increase the com-
munication complexity. Since there are at most t honest parties who issue an r-request by
the argument above to establish totality, m is transmitted O(t2) times and the overall commu-
nication complexity is O(n2k′ + n|m|+ t2|m|), or O(n2|m|) with maximal resilience.

Contrast this with the standard form of Bracha’s broadcast that requires bit complexity
Ω(n2|m|), even in executions without faults. Under optimal circumstances, Protocol RBC needs
to transmit m only once per party in the system.

3.2 Verifiable Broadcast

A party Pi that has delivered a payload message using reliable broadcast may want to inform
another party Pj about this. Such information might be useful to Pj if it has not yet delivered
the message, but can exploit this knowledge somehow, in particular since Pj is guaranteed to
deliver the same message later by the agreement property. In a standard reliable broadcast,
such as the protocol from the previous section, however, this knowledge cannot be transferred
in a verifiable way.

We formalize this property of a broadcast protocol here because it is useful in our application
below, and call it verifiability. Informally, it means this: when Pj claims that it is not yet in a
state to deliver a particular payload message m, then Pi can reply with a single protocol message
and when Pj processes this, it will deliver m immediately and terminate the corresponding
broadcast.

Definition 4 (Verifiability). A broadcast protocol is called verifiable if the following holds,
except with negligible probability: When an honest party has delivered m tagged with ID , then
it can produce a single protocol message M that it may send to other parties such that any
other honest party will deliver m tagged with ID upon receiving M (provided the other party
has not already delivered m).

We call M the message that completes the verifiable broadcast. This notion implies that
there is a predicate VID that the receiving party can apply to an arbitrary bit string for checking
if it constitutes a message that completes a verifiable broadcast tagged with ID .

Protocol RBC could be made verifiable by adding a digital signature to the r-ready messages
(this idea goes back to Pease, Shostak, and Lamport [33]). But verifiability is more useful
in connection with weaker protocols than reliable broadcast; for example, in the consistent
broadcast introduced next.

3.3 Consistent Broadcast

The totality property of reliable broadcast is rather expensive to satisfy; it is the main rea-
son why most protocols for reliable broadcast need on the order of n2 messages. For some

23



applications, however, totality is not necessary and can be ensured by other means, as long as
consistency and integrity are satisfied. We call the resulting notion consistent broadcast and
discuss it in this section.

Several protocols for consistent broadcast have been proposed by Reiter et al. [36, 29]. To
ensure agreement (i.e., totality) for delivered messages, these protocols are complemented by
an external stability mechanism from which parties learn about the existence of messages they
have not yet delivered. No such general mechanism is assumed here, but the parties may learn
that also from an application.

3.3.1 Definition

The same restrictions on the adversary apply as for reliable broadcast. A consistent broadcast
protocol is activated when the adversary delivers a message to Pj of the form

(ID .j.s, in, c-broadcast,m),

with m ∈ {0, 1}∗ and s ∈ N. When this occurs, we say Pj consistently broadcasts m tagged
with ID .j.s.

A party terminates a consistent broadcast of m tagged with ID .j.s by generating an output
message of the form

(ID .j.s, out, c-deliver,m).

In this case, we say Pi consistently delivers m tagged with ID .j.s. To distinguish consistent
broadcast from other forms of broadcast, we will sometimes use the terms c-broadcast and
c-deliver.

All protocol messages generated by honest parties and tagged with ID .j.s are associated to
the broadcast of m by Pj with sequence number s.

Definition 5 (Consistent Broadcast). A protocol for consistent broadcast is a protocol for
reliable broadcast that does not necessarily satisfy totality.

In other words, consistent broadcast makes no provisions that two parties do deliver the
payload message, but maintains consistency among the actually delivered messages with the
same senders and sequence numbers.

The notion of an authenticated consistent broadcast can be defined similarly to authenti-
cated reliable broadcast, replacing the integrity condition by authenticity.

3.3.2 A Protocol for Verifiable Consistent Broadcast

Protocol VCBC implements verifiable consistent broadcast and is described in Figure 2. It
uses a non-interactive (n, dn+t+1

2 e, t)-dual-threshold signature scheme S1 with verifiable shares
according to Section 2.3.2. Recall that all messages are authenticated according to our basic
system model.

The protocol is based on the “echo broadcast” of Reiter [36], but uses a threshold signature
to decrease the communication complexity. The idea behind it is that the sender broadcasts
the message to all parties and hopes for dn+t+1

2 e parties to sign it as “witnesses” to guarantee
consistency. The signature shares are then collected by the sender and combined to a threshold
signature on the message; it then sends the signature all parties. After receiving the message
together with a valid signature, a party delivers it immediately.
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Protocol VCBC for party Pi and tag ID .j.s

Initialization:

m̄← ⊥; µ̄← ⊥
Wd ← ∅; rd ← 0 (d ∈ {0, 1}k′)

Upon receiving message (ID .j.s, in, c-broadcast,m):
send (ID .j.s, c-send,m) to all parties

Upon receiving message (ID .j.s, c-send,m) from Pl:

if j = l and m̄ = ⊥ then
m̄← m
compute an S1-signature share ν on (ID .j.s, c-ready,H(m))
send (ID .j.s, c-ready,H(m), ν) to Pj

Upon receiving message (ID .j.s, c-ready, d, νl) from Pl for the first time:

if i = j and νl is a valid S1-signature share then
Wd ←Wd ∪ {νl}
rd ← rd + 1
if rd = dn+t+1

2 e then
combine the shares in Wd to an S1-threshold signature µ
send (ID .j.s, c-final, d, µ) to all parties

Upon receiving message (ID .j.s, c-final, d, µ):
if H(m̄) = d and µ̄ = ⊥ and µ is a valid S1-signature then
µ̄← µ
output (ID .j.s, out, c-deliver, m̄)

Implementation of verifiability property

Upon receiving message (ID .j.s, c-request) from Pl:

if µ̄ 6= ⊥ then
send (ID .j.s, c-answer, m̄, µ̄) to Pl

Upon receiving message (ID .j.s, c-answer,m, µ) from Pl:

if µ̄ = ⊥ and µ is a valid S1-signature on (ID .j.s, c-ready,H(m)) then
µ̄← µ
m̄← m
output (ID .j.s, out, c-deliver, m̄)

Figure 2: Protocol VCBC for verifiable and authenticated consistent broadcast.

25



Because a party may forward the message and the signature to other parties, the protocol
is also verifiable according to Definition 4. The corresponding interface is implemented by the
c-request and c-answer messages, which are not otherwise used by the protocol.

The consistency property of the protocol is based on the following lemma.

Lemma 5. For all senders j, sequence numbers s, and strings ID, it is infeasible for the
adversary in Protocol VCBC to create valid S1-signatures on the strings (ID .j.s, c-ready,m)
and (ID .j.s, c-ready,m′) with m 6= m′.

Proof. Suppose not. Then, assuming S1 is secure, there are at least dn+t+1
2 e−t signature shares

from distinct honest parties on a message containing ID .j.s and m and at least as many from
honest parties on the message containing ID .j.s and m′. In total, there are n+t+1−2t = n−t+1
or more shares generated by honest parties containing ID .j.s. Since there are only n− t honest
parties, at least one honest party has signed two different messages with the same sender j and
sequence number s, which is impossible according to the protocol.

Theorem 6. Assuming S1 is a secure (n, dn+t+1
2 e, t)-dual-threshold signature scheme, Proto-

col VCBC provides verifiable and authenticated consistent broadcast for n > 3t.

Proof. Validity for an honest sender is obvious from the construction of the protocol since all
honest parties generate a signature share on m as soon as they receive an c-send message
containing m. Since at least dn+t+1

2 e honest parties return them to the sender, it can combine
them to a valid signature and c-deliver the message.

The consistency property follows directly from Lemma 5 because an honest party c-delivers
a payload message only after verifying the corresponding threshold signature.

Integrity follows directly from Lemma 5 together with the logic of the protocol, where µ̄ 6= ⊥
is used to represent the state in which m̄ has already been c-delivered. The protocol provides
also authenticity because honest parties process c-send messages only from the sender indicated
by the message.

Finally, efficiency is straightforward to verify and verifiability is ensured by the c-answer
protocol message, which is generated upon receiving a suitable c-request.

The message complexity of Protocol VCBC is O(n) and its bit complexity is O(n(|m|+K)),
assuming the length of a threshold signature and a signature share is at most K bits.

4 Validated Byzantine Agreement

The standard notion of Byzantine agreement implements a binary decision and can guarantee
a particular outcome only if all honest parties propose the same value. We introduce in this
section a weaker validity condition, called external validity, which relaxes the standard validity
condition and generalizes to decisions on a value from an arbitrarily large set. It requires that
the decided value satisfies a global predicate that is determined by the particular application
and known to all parties. Each party adds some validation data to the proposed value, which
serves as the proof for its validity. Typically, this consists of a digital signature that can be
verified by all parties. The agreement protocol then returns to the caller not only the decision
value, but also the corresponding validation data—the caller might need this information if it
did not know it before. The standard validity condition is the special case of a trivially true
predicate.
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Validated Byzantine agreement generalizes the primitive of agreement on a core set [2, 3],
which is used in the information-theoretic model for a similar purpose. Validated Byzantine
agreement also generalizes the notion of interactive consistency [16] to the Byzantine model,
which requires agreement on a vector of n values, one from each party.

Another related problem is set agreement [11], in which the agreement condition is relaxed
so that the output of each party is contained in a small, global set. Although there exists a
considerable literature on this problem, it cannot be used for our applications because it gives
only an approximation of agreement.

4.1 Definition

Suppose there is a global polynomial-time computable predicate QID known to all parties, which
is determined by an external application. Each party may propose a value v together with a
proof π that should satisfy QID . The agreement domain is not restricted to binary values.

A validated Byzantine agreement protocol is activated by a message of the form

(ID , in, v-propose, v, π),

where v ∈ {0, 1}∗ and π ∈ {0, 1}∗. When this occurs, we say Pi proposes v validated by π for
transaction ID . We assume the adversary activates all honest parties on a given ID at most
once and, w.l.o.g., honest parties propose values with proofs that satisfy QID .

A party terminates a validated Byzantine agreement protocol by generating a message of
the form

(ID , out, v-decide, v, π).

In this case, we say Pi decides v validated by π for transaction ID .
We say that any protocol message with tag ID that was generated by an honest party is

associated to the validated Byzantine agreement protocol for ID . An agreement protocol may
also invoke sub-protocols for low-level broadcasts or for Byzantine agreement; in this case, all
messages associated to those protocols that are started on behalf of the validated agreement
protocol are associated to ID as well (such messages have tags with prefix ID | . . . ).

Definition 6 (Validated Byzantine Agreement). A protocol solves validated Byzantine
agreement with predicate QID if it satisfies the following conditions except with negligible
probability:

External Validity: Any honest party that terminates for ID decides v validated by π such
that QID(v, π) holds.

Agreement: If some honest party decides v for ID , then any honest party that terminates
decides v for ID .

Liveness: If all honest parties have been activated on ID and all associated messages have
been delivered, then all honest parties have decided for ID .

Integrity: If all parties follow the protocol, and if some party decides v validated by π for ID ,
then some party proposed v validated by π for ID .

Efficiency: For every ID , the communication complexity for ID is probabilistically uniformly
bounded.
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In other words, honest parties may propose all different values and the decision value may
have been proposed by a corrupted party, as long as honest parties can verify the corresponding
validation during the protocol. Note that agreement, liveness, and efficiency are the same as
in the definition of ordinary, binary Byzantine agreement. Integrity is needed to rule out some
trivial protocols in cases where a trivial predicate is used.

Another variation of the validity condition is that an application may prefer one decision
value over others. Such an agreement protocol may be biased and always output the preferred
value in cases where other values would have been valid as well.

For binary validated agreement, we will need a protocol that is biased towards 1 below. Its
purpose is to detect whether there is a validation for 1, so it suffices to guarantee termination
with output 1 if t+1 honest parties know the corresponding information at the outset. A binary
validated Byzantine agreement protocol biased towards 1 is a protocol for validated Byzantine
agreement on values in {0, 1} such that the following condition holds:

Biased External Validity: If at least t+ 1 honest parties propose 1, then any honest party
that terminates for ID decides 1.

We describe two related protocols for multi-valued validated Byzantine agreement below:
Protocol VBA, described in Section 4.3, needs O(n) rounds and invokes O(n) binary agreement
sub-protocols; this can be improved to a constant expected number of rounds, resulting in
Protocol VBAconst, which is described in Section 4.4. But first we discuss the binary case.

4.2 Protocols for Binary Agreement

Binary asynchronous Byzantine agreement protocols can easily be adapted to external validity.
For example, in the protocol of Cachin, Kursawe, and Shoup [7] one has to “justify” the pre-
votes of round 1 with a valid π. The logic of the protocol guarantees that either a decision is
reached immediately or the validations for 0 and for 1 are seen by all parties in the first two
rounds.

Furthermore, the protocol can be biased towards 1 by modifying the coin such that it always
outputs 1 in the first round.

4.3 A Protocol for Multi-valued Agreement

We describe Protocol VBA that implements multi-valued validated Byzantine agreement.
The basic idea of the validated agreement protocol is that every party proposes its value

as a candidate value for the final result. One party whose proposal satisfies the validation
predicate is then selected in a sequence of binary Byzantine agreement protocols and this value
becomes the final decision value. More precisely, the protocol consists of the following steps
(see Figure 3).

Echoing the proposal (lines 1–4): Each party Pi c-broadcasts the value that it proposes to
all other parties using verifiable authenticated consistent broadcast. This ensures that all
honest parties obtain the same proposal value for any particular party, even if the sender
is corrupted. Then Pi waits until it has received n − t proposals satisfying QID before
entering the agreement loop.

Agreement loop (lines 5–20): One party is chosen after another, according to a fixed per-
mutation Π of {1, . . . , n}. Let a denote the index of the party selected in the current
round (Pa is called the “candidate”). Each party Pi carries out the following steps for Pa:
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1. Send a v-vote message to all parties containing 1 if Pi has received Pa’s proposal
(including the proposal in the vote) and 0 otherwise (lines 6–11).

2. Wait for n−t v-vote messages, but do not count votes indicating 1 unless a valid pro-
posal from Pa has been received—either directly or included in the v-vote message
(lines 12–13).

3. Run a binary validated Byzantine agreement biased towards 1 to determine whether
Pa has properly broadcast a valid proposal. Vote 1 if Pi has received a valid proposal
from Pa and validate this by the protocol message that completes the verifiable
broadcast of Pa’s proposal. Otherwise, if Pi has received n − t v-vote messages
containing 0, vote 0; no validation data is needed here. If the agreement decides 1,
exit from the loop (lines 14–20).

Delivering the chosen proposal (lines 21–24): If Pi has not yet c-delivered the broadcast
by the selected candidate, obtain the proposal from the validation returned by the Byzan-
tine agreement.

The full protocol is shown in Figure 3.
An obvious optimization of Protocol VBA is based on the observation that in most cases,

adding Pa’s proposal in ρ to a v-vote message is not necessary. If this is omitted, then the
code for Pi to receive v-vote messages has to be modified as follows. If a v-vote from Pj
indicates 1 but Pi has not yet received Pa’s proposal, ignore the vote and ask Pj to supply
Pa’s proposal (by sending it the message (ID |vcbc.a.0, c-request)). The v-vote by Pj is only
taken into account after (ID , v-echo, wa, πa) has been c-delivered with tag ID |vcbc.a.0 such
that QID(wa, πa) holds; however, it may still be that enough votes indicating 0 from other
parties are received before that.

Lemma 7. In Protocol VBA, the adversary can cause at most 2t iterations of the agreement
loop.

Proof. The proof works by counting the total number A of v-vote messages containing 0 that
are generated by honest parties (over all iterations of the agreement loop).

Since every honest party has received a valid proposal from n − t parties in the v-echo
broadcasts, it will generate v-vote messages containing 0 for at most t proposing parties.
Thus, A ≤ t(n− t).

Note that for the binary Byzantine agreement protocol to decide 0 for a particular a and to
cause one more iteration of the loop, at least n−2t honest parties must propose 0 for the binary
agreement (otherwise, there would be t+ 1 or more honest parties proposing 1 and the binary
agreement protocol would terminate with 1, as it is biased towards 1). Since honest parties
only propose 0 if they have received n− t v-vote messages containing 0, there must be at least
n− 2t honest parties who have generated a v-vote message containing 0 in this iteration.

Let R denote the number of iterations of the loop where the binary agreement protocol
decides 0. From the preceding argument, we have A ≥ R(n− 2t).

Combining these two bounds on A, we obtain R(n− 2t) ≤ (n− t)t, or equivalently,

R ≤ t+
t2

n− 2t
.

Using n − 2t ≥ t + 1, this can be simplified to R ≤ t + t2

t+1 and further to R < 2t. Thus, the
binary agreement decides 1 at the latest in iteration R+1 of the loop and the lemma follows.
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Protocol VBA for party Pi, tag ID, and validation predicate QID

Let VID |a(v, ρ) be the following predicate:

VID |a(v, ρ) ≡ (v = 0) or(
v = 1 and ρ completes the verifiable authenticated c-broadcast of a message

(v-echo, wa, πa) with tag ID .a.0 such that QID(wa, πa) holds
)

Upon receiving message (ID , in, v-propose, w, π):
1: verifiably authenticatedly c-broadcast message (v-echo, w, π) tagged with ID |vcbc.i.0
2: wj ← ⊥;πj ← ⊥ (1 ≤ j ≤ n)
3: wait for n− t messages (v-echo, wj , πj) to be c-delivered with tag ID |vcbc.j.0

from distinct Pj such that QID(wj , πj) holds
4: l← 0
5: repeat
6: l← l + 1; a← Π(l)
7: if wa = ⊥ then
8: send the message (ID , v-vote, a, 0,⊥) to all parties
9: else

10: let ρ be the message that completes the c-broadcast with tag ID |vcbc.a.0
11: send the message (ID , v-vote, a, 1, ρ) to all parties
12: uj ← ⊥; rj ← ⊥ (1 ≤ j ≤ n)
13: wait for n− t messages (ID , v-vote, a, uj , ρj) from distinct Pj such

that VID |a(uj , ρj) holds
14: if there is some uj = 1 then
15: v ← 1; ρ← ρj
16: else
17: v ← 0; ρ← ⊥
18: propose v validated by ρ for ID |a in binary validated Byzantine agreement

biased towards 1, with predicate VID |a
19: wait for the agreement protocol to decide some b validated by σ for ID |a
20: until b = 1
21: if wa = ⊥ then
22: use σ to complete the verifiable authenticated c-broadcast with tag ID |vcbc.a.0

and c-deliver (ID , v-echo, wa, πa)
23: output (ID , out, v-decide, wa, πa)
24: halt

Figure 3: Protocol VBA for multi-valued validated Byzantine agreement.
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Theorem 8. Given a protocol for biased binary validated Byzantine agreement and a protocol
for verifiable authenticated consistent broadcast, Protocol VBA provides multi-valued validated
Byzantine agreement for n > 3t.

Proof. We have to establish external validity, agreement, liveness, and efficiency.
External validity follows because every honest party that proposes 1 in the agreement on

party Pa has verified that QID holds for wa and πa. Thus, by the standard validity condition
for the binary Byzantine agreement, the decision is 0 if QID does not hold.

For agreement, note that the properties of the binary validated Byzantine agreement proto-
col ensure that all parties terminate the loop with the same a. By the consistency property of
consistent broadcast, all honest parties obtain the same values wa and πa from the broadcast
tagged with ID |vcbc.a.0. Thus, they output the same wa.

Liveness and integrity hold by inspection of the protocol.
Efficiency follows from Lemma 3 together with Lemma 7 because there are at most 2t binary

agreement sub-protocols invoked for a particular ID .

The message complexity of Protocol VBA is O(tn2) if Protocol VCBC is used for verifiable
consistent broadcast and the binary validated Byzantine agreement is implemented according
to Section 4.2.

If all parties propose v and π that are together no longer than L bits, the communication
complexity in the above case is O(n2(tK + L)), assuming the length of a threshold signature
and a signature share is at most K bits. For a constant fraction of corrupted parties, however,
both values are cubic in n. As shown next, the expected message complexity can be reduced
to a quadratic expression in n.

4.4 A Constant-round Protocol for Multi-valued Agreement

In this section we present Protocol VBAconst, which is an improvement of the protocol in the
previous section that guarantees termination within a constant expected number of rounds. The
drawback of Protocol VBA above is that the adversary knows the order Π in which the parties
search for an acceptable candidate, i.e., one that has broadcast a valid proposal. Although at
least one third of all parties are guaranteed to be accepted, as shown above, the adversary can
choose the corruptions and schedule messages such that none of them is examined early in the
agreement loop.

The remedy for this problem is to choose Π randomly during the protocol after making sure
that enough parties are already committed to their votes on the candidates. This is achieved
in two steps. First, one round of commitment exchanges is added before the agreement loop.
Each party must commit to the votes that it will cast by broadcasting the identities of the
n − t parties from which it has received valid v-echo messages (using at least authenticated
consistent broadcast). Honest parties will later only accept v-vote messages that are consistent
with the commitments made before. The second step is to determine the permutation Π using a
threshold coin-tossing scheme that outputs a random, unpredictable value after enough votes are
committed. Taken together, these steps ensure that the fraction of parties which are guaranteed
to be accepted are distributed randomly in Π, causing termination in a constant expected
number of rounds.

The details of Protocol VBAconst are described in Figure 4 as modifications to Protocol VBA.
To analyze the protocol, we consider the state of the system at the point in time when

the first honest party Pi reveals its coin share. The crucial observation is that n − t “early
committing” parties are committed to their 0-votes at this point because Pi has delivered the
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Protocol VBAconst for party Pi, tag ID, and validation predicate QID

Modify Protocol VBA for party Pi, tag ID , and validation predicate QID as follows:

1. Initialize and distribute the shares for an (n, t+ 1)-threshold coin-tossing scheme C1 with
k′′-bit outputs during system setup. Recall that this defines a pseudorandom function F .
Let G be a pseudorandom generator according to Section 2.3.

2. Include the following instructions between lines 3 and 4 of Protocol VBA, before entering
the agreement loop:

1: cj ←

{
1 if wj 6= ⊥
0 otherwise

(1 ≤ j ≤ n)

2: C ← [c1, . . . , cn]
3: authenticatedly c-broadcast the message (v-commit, C) tagged with ID |cbc.i.0
4: Cj ← ⊥ (1 ≤ j ≤ n)
5: wait for n− t messages (v-commit, Cj) to be c-delivered with tag ID |cbc.j.0

such that at least n− t entries in Cj are 1
6: generate a coin share γ of the coin ID |vba and send the message (ID , v-coin, γ)

to all parties
7: wait for t+ 1 v-coin messages containing shares of the coin ID |vba and

combine these to get the value S = F (ID |vba) ∈ {0, 1}k′′

8: choose a random permutation Π, using the pseudorandom generator G with seed S.

3. Modify the condition for accepting v-vote messages (line 13) inside the agreement loop
such that (v-vote, a, 0,⊥) from Pj is accepted only if Cj is known and Cj [a] = 0. (This
involves also waiting for additional messages (v-commit, Cj) to be c-delivered as above.)

Figure 4: Protocol VBAconst for multi-valued validated Byzantine agreement.
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corresponding broadcasts. We are now going to investigate the number of candidates that can
be rejected by the adversary, by making the binary Byzantine agreement decide 0, and the
number of iterations of the agreement loop.

Lemma 9. Let A ⊆ {1, . . . , n} denote the set of parties that garner less than n − 2t commit-
ments to 0-votes from the early committers, and suppose Π is an ideal, random permutation of
{1, . . . , n}. Then, except with negligible probability,

1. for every a ∈ A, the binary agreement protocol on ID |a will decide 1;

2. |A| > n− 2t;

3. there exists a constant β > 1 such that for all f ≥ 1,

Pr
[(

Π(1) 6∈ A
)
∧ · · · ∧

(
Π(f) 6∈ A

)]
≤ β−f .

Proof. In order for the binary agreement for ID |a to decide 0, there must be some honest party
who proposes 0. By the instructions for computing v, it must have received n − t v-vote
messages containing 0 that are consistent with the commitments made by their issuers. But
since there are only n distinct parties, at least n − 2t of those 0-votes must come from early
committers, which is not the case for any a ∈ A. This proves the first claim.

To establish the second claim, let A denote the total number of commitments to 0-votes
cast by early committers. Since every early committer may commit to voting 0 for at most t
parties, we have A ≤ t(n − t). On the other hand, observe that A ≥ (n − |A|)(n − 2t) by the
definition of A.

Observe that these bounds on A are the same as in Lemma 7 with R = n− |A|. Using the
same argument, it follows |A| > n− 2t.

The third claim follows now because |A| is at least a constant fraction of n and thus, there
is a constant β > 1 such that Pr[Π(i) 6∈ A] ≤ 1/β for all 1 ≤ i ≤ f . Since the probability of the
f first elements of Π jointly satisfying the condition is no larger than for f independently and
uniformly chosen values, we obtain

Pr
[(

Π(1) 6∈ A
)
∧ · · · ∧

(
Π(f) 6∈ A

)]
≤ β−f .

Lemma 10. Assuming C1 is a secure threshold coin-tossing scheme and G is a pseudorandom
generator, there is a constant β > 1 such that for all f ≥ 1, the probability of any honest party
performing f or more iterations of the agreement loop is at most β−f + ε, where ε is negligible.

Proof. This can be shown by a standard hybrid argument, where one makes a series of small
modifications to transform an idealized system into the real system, argues that each change
affects the adversary only with negligible probability, and then concludes that the real system
behaves just like the idealized system with all but negligible probability.

The “hybrid systems” are defined by running the system

(1) with a truly random permutation Π,

(2) with the output of G replaced by truly random bits, and Π computed from that,

(3) with F (ID |vba) replaced by a random bit string, but G being a pseudorandom generator
according to the protocol, and Π computed from the output of G,
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(4) with F , G, and Π computed according to the protocol.

In all cases, we define a statistical test by letting the adversary run the system until the first
honest party is about to release its share of the coin ID |vba, and then F , G, and Π are
determined. Note that the set of early committers is defined and the set A (of Lemma 9) can
be computed at this point. The statistical test simply outputs 0 if Π(i) 6∈ A for all 1 ≤ i ≤ f
and 1 otherwise.

We now analyze the behavior of the statistical test.
Case (1) above corresponds to the idealized system in Lemma 9, which implies that the test

outputs 0 at most with probability β−f .
In case (2) above, the permutation is generated from truly random bits with uniform distri-

bution. This can be done using an algorithm that always terminates in a polynomial number
of steps such that the output permutation is statistically close to a random permutation. The
behavior of any polynomial-time adversary will not be changed by this, except with negligible
probability.

Cases (2) and (3) above can be mapped to the definition of a pseudorandom generator. But
if G is secure, the statistical test will not be able to distinguish between them with more than
negligible probability.

Finally, the difference between (3) and (4) corresponds to game C1–C4 in the definition of
the coin F . Assuming F is pseudorandom, this cannot induce more than a negligible difference
in the behavior of the statistical test.

In conclusion, we obtain that no polynomial-time statistical test can distinguish between (1)
and (4) and therefore the conclusions of Lemma 9 apply also to the real protocol except with
negligible probability. Since honest parties go through more than f iterations of the agreement
loop only if the first f elements of Π are not in A, this probability is at most β−f plus some
negligible quantity.

Theorem 11. Given a protocol for biased binary validated Byzantine agreement and a protocol
for verifiable consistent broadcast, Protocol VBAconst provides multi-valued validated Byzantine
agreement for n > 3t and invokes a constant expected number of binary Byzantine agreement
sub-protocols.

Proof. Since we have not changed the way in which binary agreement sub-protocols are invoked
from Protocol VBA, we only have to show liveness and efficiency for the modified protocol.

Liveness holds because all n−t honest parties broadcast correctly constructed commitments
and therefore, enough valid v-commit and v-vote messages are guaranteed to be received in
line 13 of the original protocol.

Efficiency follows from Lemma 3 together with Lemma 10 above, because honest parties
generate a polynomial number of messages in each iteration of the agreement loop.

The expected message complexity of Protocol VBAconst is O(n2) if Protocol VCBC is used
for consistent verifiable broadcast and the binary validated Byzantine agreement is implemented
according to Section 4.2.

If all parties propose v and π that are together no longer than L bits, the expected com-
munication complexity in the above case is O(n3 + n2(K +L)), assuming a digital signature is
K bits. The n3-term, which results from broadcasting the commitments, has actually a very
small hidden constant because the commitments can be represented as bit vectors.

For a constant fraction of corrupted parties, the message complexity is quadratic in n and
essentially optimal. We do not know whether the communication complexity can be lowered to
a quadratic expression in n as well.
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5 Atomic Broadcast

Atomic broadcast guarantees a total order on messages such that honest parties deliver all
messages with a common tag in the same order. It is well known that protocols for atomic
broadcast are considerably more expensive than those for reliable broadcast because even in
the crash-fault model, atomic broadcast is equivalent to consensus [10] and cannot be solved
by deterministic protocols. The atomic broadcast protocol given here builds directly on multi-
valued validated Byzantine agreement from the last section.

5.1 Definition

Atomic broadcast ensures that all messages broadcast with the same tag ID are delivered in
the same order by honest parties; in this way, ID can be interpreted as the name of a broadcast
“channel.” The total order of atomic broadcast yields an implicit labeling of all messages.
Assuming some honest party has atomically delivered s distinct messages, the global sequence
of the first s delivered messages is well-defined. Thus, an explicit sequence number is not
needed. Since the sender of a payload message is not necessarily identifiable (without requiring
explicit authenticity instead of integrity), the sender name is also omitted, and an unstructured
tag ID suffices.

An atomic broadcast is activated when the adversary delivers an input message to Pi of the
form

(ID , in, a-broadcast,m),

where m ∈ {0, 1}∗. When this occurs, we say Pi atomically broadcasts m with tag ID . “Activa-
tion” here refers only to the broadcast of a particular payload message; the broadcast channel
ID must be opened before the first such request.

A party terminates an atomic broadcast of a particular payload by generating an output
message of the form

(ID , out, a-deliver,m).

In this case, we say Pi atomically delivers m with tag ID . To distinguish atomic broadcast from
other forms of broadcast, we will also use the terms a-broadcast and a-deliver.

For the composition of atomic broadcast with other protocols, we need a synchronized output
mode, where a-delivering a payload may block the protocol and prevent it from delivering
more payloads until the consumer is ready to accept them. We introduce an acknowledgment
mechanism for output messages for this purpose, i.e., the adversary should acknowledge every
a-delivered payload message to the delivering party. In practice, the a-delivery operation could
be implemented by a blocking upcall to the higher-level protocol. In terms of the formal
model, an acknowledgment is modeled as an input message (ID , in, a-acknowledge) from the
adversary. When a party receives such a message, it means that its most recently a-delivered
payload message with tag ID has been acknowledged. We will say that the adversary generates
acknowledgments if it acknowledges every a-delivered message.

Again, the adversary must not request an a-broadcast of the same payload message from
any particular party more than once for each ID (however, several parties may a-broadcast the
same message).

Atomic broadcast protocols should be fair so that a payload message m is scheduled and
delivered within a reasonable (polynomial) number of steps after it is a-broadcast by an honest
party. But since the adversary may delay the sender arbitrarily and a-deliver an a priori
unbounded number of messages among the remaining honest parties, we can only provide such
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a guarantee when at least t+ 1 honest parties become “aware” of m. Our definitions of validity
and of fairness require actually that only after t+1 honest parties have a-broadcast some payload,
it will be delivered within a reasonable number of steps. This is also the reason for allowing
multiple parties to a-broadcast the same payload message—a client application might be able
to satisfy this precondition through external means and achieve guaranteed fair delivery in this
way. Fairness can be interpreted as a termination condition for the broadcast of a particular
payload m.

The efficiency condition (which ensures fast termination) for atomic broadcast differs from
the protocols discussed so far because the protocol for a particular tag cannot terminate on its
own. It merely stalls if no more undelivered payload messages are in the system and must be
terminated externally. Thus, we cannot define efficiency using the absolute number of protocol
messages generated. Instead we measure the progress of the protocol with respect to the number
of messages that are a-delivered by honest parties. In particular, we require that the number
of associated protocol messages does not exceed the number of a-delivered payload messages
times a polynomial factor, independent of the adversary.

We say that a protocol message is associated to the atomic broadcast protocol with tag ID
if and only if the message is generated by an honest party and tagged with ID or with a tag
ID | . . . starting with ID . In particular, this encompasses all messages of the atomic broadcast
protocol with tag ID generated by honest parties and all messages associated to basic broadcast
and Byzantine agreement sub-protocols invoked by atomic broadcast.

Fairness and efficiency are defined using the number of payload messages in the “implicit
queues” of honest parties. We say that a payload message m is in the implicit queue of a party
Pi (for channel ID) if Pi has a-broadcast m with tag ID , but no honest party has a-delivered m
tagged with ID . The system queue contains any message that is in the implicit queue of some
honest party. We say that one payload message in the implicit queue of an honest party Pi is
older than another if Pi a-broadcast the first message before it a-broadcast the second one.

When discussing implicit queues at particular points in time, we consider a sequence of
events E1, . . . , Ek′′′ during the operation of the system, where each event but the last one is
either an a-broadcast or a-delivery by an honest party. The phrase “at time τ” for 1 ≤ τ ≤ k′′′
refers to the point in time just before event Eτ occurs.

Definition 7 (Atomic Broadcast). A protocol for atomic broadcast satisfies the following
conditions except with negligible probability:

Validity: There are at most t honest parties with non-empty implicit queues for some channel
ID , provided the adversary opens channel ID for all honest parties, delivers all associated
messages, and generates acknowledgments.

Agreement: If some honest party has a-delivered m tagged with ID , then all honest parties a-
deliver m tagged with ID , provided the adversary opens channel ID for all honest parties,
delivers all associated messages, and generates acknowledgments for every party that has
not yet a-delivered m tagged with ID .

Total Order: Suppose an honest party Pi has a-delivered m1, . . . ,ms with tag ID , a distinct
honest party Pj has a-delivered m′1, . . . ,m

′
s′ with tag ID , and s ≤ s′. Then ml = m′l for

1 ≤ l ≤ s.

Integrity: For all ID , every honest party a-delivers a payload message m at most once tagged
with ID . Moreover, if all parties follow the protocol, then m was previously a-broadcast
by some party with tag ID .
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Fairness: Fix a particular protocol instance with tag ID . Consider the system at any point
in time τ0 where there is a set T of t+ 1 honest parties with non-empty implicit queues,
letM be the set consisting of the oldest payload message for each party in T , and let S0

denote the total number of distinct payload messages a-delivered by any honest party so
far. Define a random variable W as follows: let W be the total number of distinct payload
messages a-delivered by honest parties at the point in time when the first message in M
is a-delivered by any honest party, or let W = S0 if this never occurs. Then W − S0 is
uniformly bounded.

Efficiency: For a particular protocol instance with tag ID , let X denote its communication
complexity, and let Y be the total number of distinct payload messages that have been
a-delivered by any honest party with tag ID . Then, at any point in time, the random
variable X/(Y + 1) is probabilistically uniformly bounded.

Some remarks on the above definition:

1. Compared to the definition of reliable broadcast, agreement and integrity are analogous,
validity is somewhat weaker, and total order and fairness are new.

2. The agreement condition combines the consistency and totality of reliable broadcast;
there is no need to distinguish these two aspects here. However, only totality requires
that messages and acknowledgments are delivered.

3. Validity ensures liveness of a protocol and rules out trivially empty protocols. It is stated
in a weak form, guaranteeing progress whenever at least t + 1 honest parties have some
undelivered payload message. A stronger notion, more along the lines of the validity
condition used in reliable broadcast, would have been the following.

Strong Validity: If an honest party has a-broadcast m tagged with ID , then it a-delivers
m tagged with ID , provided the adversary opens channel ID for all honest parties,
delivers all associated messages, and generates acknowledgments.

However, our weaker notion of validity is sufficient in many applications where a client
needs to contact more than t + 1 servers anyway. It is also more suitable for protocol
composition and makes some atomic broadcast protocols simpler, like the one of Kursawe
and Shoup [23]. On the other hand, strong validity can be obtained for any atomic
broadcast protocol that provides weak validity by a relatively simple initial round of
echoing the payload to all parties, who adopt it as their own if their input queues are
empty.

4. Validity and fairness complement each other: Validity ensures that a payload message
that is a-broadcast by t+ 1 honest parties is a-delivered at all, provided all messages are
delivered and acknowledgments are generated, and fairness implies that it is a-delivered
reasonably quickly, relative to other payloads.

One could define a weaker versions of fairness and validity by considering only the situation
that f honest parties a-broadcast a payload message for t+ 1 ≤ f ≤ n− t.

5. The efficiency condition counts only the payload messages delivered by the “fastest” honest
party. This party will usually be synchronized within one round with at least n− 2t− 1
other honest parties, but it seems impossible to synchronize it with the “slowest” honest
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party. Moreover, there seems to be no easy way to provide a fixed bound on a suitable
statistic (such as communication complexity) until all honest parties have delivered a
particular payload. This is because the adversary can always drive the system forward
with only n − 2t honest parties and leave the others behind. The “fast” parties might
generate an a priori unbounded amount of work until the “slow” ones finally a-deliver
a particular payload, if at all. (Adding 1 to the divisor covers the state until the first
payload is delivered.)

5.2 A Protocol for Atomic Broadcast

We now present a protocol for atomic broadcast based on validated Byzantine agreement. Its
overall structure is similar to the protocol of Hadzilacos and Toueg [21] for the crash-fault
model, but we need to take additional measures to tolerate Byzantine faults.

Our Protocol ABC for atomic broadcast proceeds as follows. Each party maintains a FIFO
queue of not yet a-delivered payload messages. Messages received to a-broadcast are appended
to this queue whenever they are received. The protocol proceeds in asynchronous global rounds,
where each round r consists of the following steps:

1. Send the first payload message w in the current queue to all parties, accompanied by a
digital signature σ in an a-queue message.

2. Collect the messages of n − t distinct parties and store them in a vector W , store the
corresponding signatures in a vector S, and propose W for Byzantine agreement validated
by S.

3. Perform multi-valued Byzantine agreement with validation of a vector W = [w1, . . . , wn]
and proof S = [σ1, . . . , σn] through the predicate QID |abc.r(W,S) which is true if and
only if for at least n− t distinct indices j, the vector element σj is a valid S-signature on
(ID , a-queue, r, j, wj) by Pj .

4. After deciding on a vector V of messages, deliver the union of all payload messages in V
according to a deterministic order; proceed to the next round.

In order to ensure liveness of the protocol, there are actually two ways in which the parties
move forward to the next round: when a party receives an a-broadcast input message (as stated
above) and when a party receives an a-queue message of another party pertaining to the current
round. If either of these two messages arrive and contain a yet undelivered payload message,
and if the party has not yet sent its own a-queue message for the current round, then it enters
the round by appending the payload to its queue and sending an a-queue message to all parties.

The detailed description of Protocol ABC is found in Figure 5. The FIFO queue q is an
ordered list of values (initially empty). It is accessed using the operations append, remove,
and first, where append(q,m) inserts m into q at the end, remove(q,m) removes m from q (if
present), and first(q) returns the first element in q. The operation m ∈ q tests if an element m
is contained in q.

A party waiting at the beginning of a round simultaneously waits for a-broadcast and
a-queue messages containing some w 6∈ d in line 2. If it receives an a-broadcast request, the
payload m is appended to q. If only a suitable a-queue protocol message is received, the party
makes w its own message for the round, but does not append it to q. It should be clear from
the protocol that no honest party is ever blocked waiting for some payload message to process
if some honest party has a-broadcast one and all associated messages have been delivered.
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Protocol ABC for party Pi and tag ID

Let QID |abc.r be the following predicate:

QID |abc.r([w1, . . . , wn], [σ1, . . . , σn]) ≡
(
for at least n− t distinct j, σj is a valid

S-signature by Pj on (ID , a-queue, r, j, wj).
)

Initialization:

q ← [] {FIFO queue of messages to a-broadcast}
d← ∅ {set of a-delivered messages}
r ← 0 {current round}

Upon receiving message (ID , in, a-broadcast,m):
if m 6∈ d and m 6∈ q then

append(q,m)

Forever:

1: wj ← ⊥;σj ← ⊥ (1 ≤ j ≤ n)
2: wait for q 6= [] or a message (ID , a-queue, r, l, wl, σl) received from Pl

such that wl 6∈ d and σl is a valid signature from Pl
3: if q 6= [] then
4: w ← first(q)
5: else
6: w ← wl
7: compute a digital signature σ on (ID , a-queue, r, i, w)
8: send the message (ID , a-queue, r, i, w, σ) to all parties
9: wait for n− t messages (ID , a-queue, r, j, wj , σj) such that σj is a valid

signature from Pj (including the message from Pl above)
10: W ← [w1, . . . , wn];S ← [σ1, . . . , σn]
11: propose W validated by S for multi-valued validated Byzantine agreement

for ID |abc.r with predicate QID |abc.r
12: wait for the validated Byzantine agreement protocol to decide some

V = [v1, . . . , vn] for ID |abc.r
13: b←

⋃n
j=1 vj

14: for m ∈ (b \ d), in some deterministic order do
15: output (ID , out, a-deliver,m)
16: wait for an acknowledgment
17: d← d ∪ {m}
18: remove(q,m)
19: r ← r + 1

Figure 5: Protocol ABC for atomic broadcast using multi-valued validated Byzantine agree-
ment.
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The term n − t in line 9 of the protocol and in the validation predicate QID |abc.r could
be replaced by any f ′ between t + 1 and n − t if the fairness condition is changed such that
f = n− f ′ + 1 parties instead of t+ 1 must have a-broadcast the message.

The protocol in Figure 5 is formulated using a single loop that runs forever after initializa-
tion; this is merely for syntactic convenience and can be implemented by decomposing the loop
into the respective message handlers.

Theorem 12. Given a protocol for multi-valued validated Byzantine agreement and assuming
S is a secure signature scheme, Protocol ABC provides atomic broadcast for n > 3t.

Proof. We first prove validity and show that the protocol even implements strong validity.
Towards a contradiction, suppose that some honest party has a-broadcast a payload message
m, but not a-delivered it and yet, all associated protocol messages and acknowledgments have
been delivered. Since the sender has a-broadcast but not a-delivered m, its queue q contains
at least m and it can no longer be waiting in line 2. Thus, it has proceeded and sent a-queue
messages to all parties in line 8. Since these have been delivered, every honest party has received
an a-queue message containing m 6∈ d and therefore has also entered the same round (by
condition for waiting in line 2). Thus, all n− t honest parties have sent valid a-queue messages
and every honest party has received all of them and subsequently started and terminated
Byzantine agreement. Since also the a-delivered payloads have been acknowledged, the sender
must be waiting in line 2 with q = []. But then m has been removed from q and this occurs
only if it was a-delivered, a contradiction.

We now establish agreement. Towards a contradiction, suppose that some honest Pi has
a-delivered a payload message m, but an honest Pj has not a-delivered it and yet, all associated
protocol messages have been delivered and acknowledgments have been generated for all parties
who have not yet a-delivered m. Assume Pi a-delivered m in round r. Since no party who has
not a-delivered m is blocked waiting for messages or acknowledgments under these conditions,
it is easy to see from inspection of the protocol and from the liveness condition of the Byzantine
agreement sub-protocol that Pj must have received all messages belonging to any round up to
and including r. But then it cannot be waiting for an acknowledgment either—unless it has
already a-delivered m.

The total order condition follows from the agreement property of the validated Byzantine
agreement primitive since all honest parties decide on the same proposal and then a-deliver all
payload messages contained in the proposal in a deterministic order. This implies also that the
set d of a-delivered messages is the same for all honest parties.

Integrity is immediate from the protocol by induction on the construction of d, using the
properties of Byzantine agreement. Even if corrupted parties include messages that have already
been delivered, they are not delivered again.

To show fairness, fix some τ0 and T (this defines also M), and consider the system at the
point in time when W > 0 is first defined. We show that W − S0 ≤ n, independent of the
adversary. Note that the decided vector in the current round is defined and contains n − t
payloads (not necessarily distinct). At least n − 2t of them are signed by honest parties that
have all caught up to the current round; we call these parties the “signing parties.” They have
each signed the oldest payload message in their queue q. By definition, the implicit queue of
every honest party is a subset of q; but because each signing party must have entered the current
round, its implicit queue was equal to its queue q at the point in time when it generated the
signature. Since T has cardinality t+ 1 and there are at least n− 2t signing parties, but only
n − t honest parties in total, there must be at least one signing party in T . Thus, there is at
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least one payload from M among the decided payloads and no more than n distinct payloads
can have been a-delivered since τ0.

For efficiency, we have to relate the communication complexity of the protocol to the pay-
load messages that were actually a-delivered. Note that honest parties generate messages only
when they make progress in the round structure—either by sending an a-queue message or by
invoking the Byzantine agreement sub-protocol. But an honest party enters the next round only
if it is aware of some payload message that it has not yet a-delivered. Since at least one payload
message from the system queue is delivered in every round, all protocol messages generated
during that round can be related to that payload. There are a fixed polynomial number of
protocol messages generated directly by the protocol in every round and the length of each one
is at most n times the length of a payload. The communication complexity of the Byzantine
agreement sub-protocol is probabilistically uniformly bounded by its efficiency condition. Thus,
the communication complexity per round is probabilistically uniformly bounded.

The message complexity of Protocol ABC to broadcast one payload message m is domi-
nated by the number of messages in the multi-valued validated Byzantine agreement; the extra
overhead for atomic broadcast is only O(n2) messages. The same holds for the communication
complexity, but the proposed values have length O(n(|m|+K)), assuming digital signatures of
length K bits.

With Protocol VBAconst from Section 4.4, the total expected message complexity is O(n2)
and the expected communication complexity is O(n3|m|) for an atomic broadcast of a single
payload message.

5.3 Equivalence of Byzantine Agreement and Atomic Broadcast

For the sake of completeness, we state the equivalence of atomic broadcast to Byzantine agree-
ment in the cryptographic model. It is the analogue to the equivalence between consensus and
atomic broadcast in the crash-fault model shown by Chandra and Toueg [10].

Corollary 13. (Binary) Byzantine agreement and atomic broadcast are equivalent in the basic
system model of Section 2.1, assuming a secure signature scheme and provided n > 3t.

Proof. To implement Byzantine agreement from an atomic broadcast protocol, a party uses the
following algorithm:

1. To propose v ∈ {0, 1} for transaction ID , compute a digital signature σ on (ID , v) and
a-broadcast the message (ID , v, σ).

2. Wait for a-delivery of the first 2t+1 messages of the form (ID , vj , σj) from distinct parties
that contain valid signatures. Decide for the simple majority of all received values vj .

The other direction follows from Theorems 8 and 12.

Note that using an appropriately defined notion of authenticated atomic broadcast, this
could also be implemented without the additional digital signatures in the reduction. However,
Protocol ABC would have to be modified in order to provide authentication.
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6 Secure Causal Atomic Broadcast

Secure causal atomic broadcast (SC-ABC) is a useful protocol for building secure applications
that use state machine replication in a Byzantine setting. It provides atomic broadcast, which
ensures that all recipients receive the same sequence of messages, and also guarantees that the
payload messages arrive in an order that maintains “input causality,” a notion introduced by
Reiter and Birman [39]. Informally, input causality ensures that a Byzantine adversary may
not ask the system to deliver any payload message that depends in a meaningful way on a yet
undelivered payload sent by an honest client. This is very useful for delivering client requests
to a distributed service in applications that require the contents of a request to remain secret
until the system processes it. Input causality is related to the standard causal order (going back
to Lamport [24]), which is a useful safety property for distributed systems with crash failures,
but is actually not well defined in the Byzantine model [21].

Input causality can be achieved if the sender encrypts a message to broadcast with the
public key of a threshold cryptosystem for which all parties share the decryption key [39]. The
ciphertext is then broadcast using an atomic broadcast protocol; after delivering it, all parties
engage in an additional round to recover the message from the ciphertext.

In our description of secure causal atomic broadcast, one of the parties acts as the sender of
a payload message. If SC-ABC is used by a distributed system to broadcast client requests, then
encryption and broadcasting is taken care of by the client. In this case, additional considerations
are needed to ensure proper delivery of the replies from the service (see [39] for those details).

6.1 Definition

Associated with any instance of a secure causal atomic broadcast protocol with tag ID is
an encryption algorithm EID . It should be possible to infer this algorithm from the dealer’s
public output. EID is a probabilistic algorithm that maps a message m to a ciphertext c.
We call c = EID(m) an encryption of m (with tag ID). Since the encryption algorithm is
probabilistic, there will in general be many different encryptions of a given message; indeed,
this will necessarily be the case if the system is to be secure.

An application that wants to securely broadcast a payload message should first encrypt it
using EID and invoke the broadcast protocol with the resulting ciphertext. Since EID is publicly
known, also clients from outside the group P1, . . . , Pn can produce ciphertexts.

A secure causal atomic broadcast protocol is activated when Pi receives an input message
of the form

(ID , in, s-broadcast, c).

We say Pi s-broadcasts c with tag ID .
Unlike atomic broadcast, delivery consists of two distinct steps: the first is the generation

of an output message of the form

(ID , out, s-schedule, c),

and the second is the generation of an output message of the form

(ID , out, s-reveal,m).

We shall require that honest parties generate sequences of such pairs of output messages—
there must never be two consecutive s-schedule or s-reveal messages. When the s-schedule
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message is generated, we will say that Pi s-schedules the ciphertext c (with tag ID). When the
s-reveal message is generated, we will say that Pi s-delivers the ciphertext c (with tag ID),
where c is the most recently s-scheduled ciphertext; we call m the associated cleartext.

Definition 8 (Secure Causal Atomic Broadcast). A secure causal atomic broadcast pro-
tocol satisfies the properties of an atomic broadcast protocol, where the s-broadcast and s-
delivery of ciphertexts in the secure causal atomic broadcast protocol play the role of the
a-broadcast and a-delivery of payload messages in an atomic broadcast protocol.

Additionally, the following conditions hold.

Message Secrecy: According to the basic system model, the parties run an atomic broadcast
protocol (and possibly other broadcast protocols), and the adversary plays the following
game:

B1. The adversary interacts with the honest parties in an arbitrary way.
B2. The adversary chooses two messages m0 and m1 and a tag ID ; it gives them to

an “encryption oracle.” The oracle chooses a bit B at random and computes an
encryption c of mB with tag ID , and gives this ciphertext to the adversary.

B3. The adversary continues to interact with the honest parties subject only to the
condition that no honest party s-schedules c with tag ID .

B4. Finally, the adversary outputs a bit B̂.

Then, for any adversary, the probability that B̂ = B must exceed 1
2 only by a negligible

amount.

Message Integrity: According to the basic system model, the parties run an atomic broadcast
protocol (and possibly other broadcast protocols), and the adversary plays the following
game:

C1. The adversary interacts with the honest parties in an arbitrary way.
C2. The adversary chooses a message m and a tag ID , and gives it to an “encryption

oracle.” The oracle computes an encryption c of m with tag ID , and gives this
ciphertext to the adversary.

C3. The adversary continues to interact with the honest parties in an arbitrary way.

We say the adversary wins the game if at some point an honest party s-delivers c with
tag ID , but corresponding cleartext m′ is not equal to m. Then, for any adversary, the
probability that it wins this game is negligible.

Message Consistency: If two parties honest parties s-deliver the same ciphertext c with tag
ID , then with all but negligible probability, the associated cleartexts are the same.

It is easy to verify that this definition implies input causality in the sense of Reiter and
Birman [39], i.e., that a cleartext remains hidden from the adversary until the corresponding
ciphertext is s-scheduled. But the cleartext may be revealed to the adversary before the first
honest party outputs it in a s-reveal message, and this is also the reason for introducing
our two-step delivery process. Although this is necessary for the proper definition of security,
s-scheduling a ciphertext might be omitted in a practical implementation.

The message integrity condition gives clients access to the broadcast protocol for cleartext
payload messages, and implies that payloads contained in correctly encrypted ciphertexts are
actually output by the honest parties.
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6.2 A Protocol for Secure Causal Atomic Broadcast

Protocol SC-ABC in Figure 6 implements secure causal atomic broadcast. It uses an (n, t +
1)-threshold cryptosystem E1 that is secure against adaptive chosen ciphertext attacks (see
Section 2.3.3) for which the parties share the decryption key. It also uses an atomic broadcast
protocol according to Section 5.

During initialization, the dealer generates a public key for E1, together with the correspond-
ing private key shares, and distributes them according to the initialization algorithm of E1.

For a tag ID , EID(m) is computed by applying the encryption algorithm of E1 to m with
label ID , using the generated public key of the cryptosystem.

We emphasize that all instances of the secure causal broadcast protocol share the same
public key for E1, and so the use of labeled ciphertexts is essential to properly “isolate” different
instances of the protocol from one another.

To s-broadcast a ciphertext c, we simply a-broadcast c. Upon a-delivery of a ciphertext c, a
party s-schedules c. Then it computes a decryption share δ and sends this to all other parties
in an s-decrypt message containing c. It waits for t + 1 s-decrypt messages pertaining to
c. Once they arrive, it recovers the associated cleartext and s-delivers c. After receiving
the acknowledgment, the party continues processing the next a-delivery by generating the
corresponding acknowledgment. The details are in Figure 6. For ease of notation, the protocol
in Figure 6 is formulated using a Forever loop; it can be decomposed into the respective
message handlers in straightforward way.

Protocol SC-ABC for party Pi and tag ID

Initialization:

open an atomic broadcast channel with tag ID |scabc

Upon receiving (ID , in, s-broadcast, c):
a-broadcast c with tag ID |scabc

Forever:

wait for the next message c that is a-delivered with tag ID |scabc
compute an E1-decryption share δ for c with label ID
output (ID , out, s-schedule, c)
send the message (ID , s-decrypt, c, δ) to all parties
δj ← ⊥ (1 ≤ j ≤ n)
wait for t+ 1 messages (ID , s-decrypt, c, δj) from distinct parties that contain valid

decryption shares for c with label ID
combine the decryption shares δ1, . . . , δn to obtain a cleartext m
output (ID , out, s-reveal,m)
wait for an acknowledgment
acknowledge the last a-delivered message with tag ID |scabc

Figure 6: Protocol SC-ABC for secure causal atomic broadcast.

Theorem 14. Given an atomic broadcast protocol and assuming E1 is a (n, t + 1)-threshold
cryptosystem secure against adaptive chosen-ciphertext attacks, Protocol SC-ABC provides se-
cure causal atomic broadcast for n > 3t.
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Proof. We have to show that the protocol implements atomic broadcast and satisfies message
secrecy and message integrity conditions.

We first show validity. Suppose enough honest parties have s-broadcast c and all associated
messages have been delivered and all acknowledgments have been generated. Thus, all senders
have a-broadcast c. We can now invoke the validity condition of the atomic broadcast protocol
as follows: first, the messages associated to the atomic broadcast have been delivered since
they are also associated to the secure broadcast; second, it is clear from the protocol that
the acknowledgements to the secure broadcast protocol are passed on to the atomic broadcast
protocol. Thus, the validity of the atomic broadcast implies that c has been a-delivered by
some honest party. For the same reasons, the agreement condition of atomic broadcast implies
that all other honest parties must also have a-delivered c, since they are not blocked or waiting
for acknowledgements. All honest parties have therefore generated decryption shares for c and
sent an s-decrypt message to all parties. It follows that any honest party has received at least
t+ 1 valid shares for c. But then it has also s-delivered c.

It is perhaps interesting to note that the above proof of validity made essential use of both
the validity and agreement properties of the underlying atomic broadcast protocol.

For agreement, suppose that an honest Pi has s-delivered c and Pj has not, and yet, all
associated messages have been delivered and acknowledgments have been generated for those
parties who have not s-delivered c. Since any honest party that has not yet s-delivered c has
received sufficiently many acknowledgements, it has also acknowledged all a-deliveries and it
cannot be waiting for an acknowledgment in the atomic broadcast protocol. Since Pi has a-
delivered c, it follows from the agreement condition of the underlying atomic broadcast that
all other honest parties must also have a-delivered c. Thus, they all have generated decryption
shares for c and Pj must have received at least t + 1 valid shares for c. Therefore, Pj has
s-delivered c, a contradiction.

To show efficiency, we must bound the amount of work done (as measured by communication
complexity) per s-delivered message. But since the s-delivery messages is synchronized with the
a-delivery of ciphertexts in Protocol SC-ABC, the number of a-delivered messages exceeds the
number of s-delivered ones by at most one, and efficiency follows from the efficiency condition
of the atomic broadcast protocol.

Note that without this synchronization, we could not achieve efficiency, since the lower-level
atomic broadcast protocol could “run ahead” of the higher-level secure causal atomic broadcast
protocol—lots of messages would be generated, but very few messages would be s-delivered.

It is easy to see that the remaining broadcast properties (total order, integrity, and fairness)
hold as well, using the corresponding properties of the underlying atomic broadcast.

Message secrecy, integrity, and consistency follow easily from the properties of the under-
lying threshold encryption scheme.

7 Conclusions

Although cryptographic techniques play an important role in the development of secure fault-
tolerant systems, the formal methods used in cryptography and in distributed systems seem
rather different today. An integration of both approaches, such as the one proposed in this
paper, is therefore desirable for developing secure distributed protocols.

Apart from the definitions, this paper presents several new protocols for asynchronous broad-
cast and Byzantine agreement problems. They illustrate how fault-tolerant broadcasts can ben-
efit from threshold-cryptographic protocols such as threshold signatures and coin-tossing. In
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particular, they lead to improved communication complexity. Our most efficient protocol for
atomic broadcast achieves O(n2) expected message complexity to broadcast a single payload
message and expected communication complexity O(n3).

Several interesting problems remain open:

– Our corruption model is static, i.e., the adversary must decide which parties to corrupt
independently from the behavior of the system. Allowing for adaptive corruptions would
give stronger security guarantees, but it is currently not known how to efficiently realize
all of our threshold-cryptographic primitives with adaptive security.

– Although the communication complexity per payload message of the atomic broadcast
protocol seems reasonable for relatively small values of n, it would be nice to reduce it
further to O(n2), or even to a smaller expression. This improvement would have to be
made in the multi-valued validated Byzantine agreement protocol.

Another approach for reducing the overhead of atomic broadcast in practice are dual-mode
protocols, which normally operate in a fast “optimistic” mode, and only switch to a slower
“pessimistic” mode if no progress seems to be made during a certain time. The protocol of
Castro and Liskov [9] is of this type, but it does not guarantee liveness in a fully asynchronous
model. Recently, Kursawe and Shoup [23] have developed such an “optimistic” atomic broad-
cast protocol that guarantees liveness and safety at the same time, and exploits many of the
techniques developed in this work.
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