Lightweight Probabilistic Broadcast

P. TH. EUGSTER, R. GUERRAOQOUI, S. B. HANDURUKANDE,
and P. KOUZNETSOV

Distributed Programming Laboratory, EPFL, Switzerland
and

A.-M. KERMARREC

Microsoft Research, Cambridge, UK

Gossip-based broadcast algorithms, a family of probabilistic broadcast algorithms, trade reliability
guarantees against “scalability” properties. Scalability in this context has usually been expressed
in terms of message throughput and delivery latency, but there has been little work on how to
reduce the memory consumption for membership management and message buffering at large
scale.

This paper presents lightweight probabilistic broadcast (Ipbcast), a novel gossip-based broad-
cast algorithm, which complements the inherent throughput scalability of traditional probabilistic
broadcast algorithms with a scalable memory management technique. Our algorithm is completely
decentralized and based only on local information: in particular, every process only knows a fixed
subset of processes in the system and only buffers fixed “most suitable” subsets of messages. We
analyze our broadcast algorithm stochastically and compare the analytical results both with sim-
ulations and concrete implementation measurements.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

General Terms: Algorithms, Design, Measurement, Performance, Reliability

Additional Key Words and Phrases: Broadcast, buffering, garbage collection, gossip, noise, random-
ization, reliability, scalability

This work has been supported by Agilent Technologies, Lombard-Odier, Microsoft Research, Swiss
National Science Foundation, and the European Project PEPITO (IST-2001-33234).

This article is a revised and extended version of Eugster et al. [2001b] and also contains material
from Kouznetsov et al. [2001].

Authors’ addresses: P. Th. Eugster, R. Guerraoui, S. B. Handurukande, and P. Kouznetsov, EPFL-
1&C-LPD, Bat. IN, CH-1015 Lausanne, Switzerland; email: {Patrick. EUGSTER, Rachid.
GUERRAOUI, Sidath. HANDURUKANDE, Petr. KOUZNETSOV}@epfl.ch; Anne-Marie Kermarrec,
Microsoft Research Ltd., 7 JJ Thomson Avenue, Cambridge CB3 OFB, UK; email: Annemk@
microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2003 ACM 0734-2071/03/1100-0341 $5.00

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003, Pages 341-374.

342 . P. Th. Eugster et al.

1. INTRODUCTION

Large scale event dissemination. Devising adequate algorithms for reliable
propagation of events at large scale constitutes an active research area. While
traditional reliable broadcast algorithms scale very poorly [Hadzilacos and
Toueg 1993], network-level protocols (e.g., Deering [1994]) lack reliability guar-
antees whatsoever, and also suffer from scalability problems. The well-known
Reliable Multicast Transport Protocol (RMTP) [Paul et al. 1997] for instance
generates a flood of positive acknowledgements from receivers, loading both
the network and the sender.

Probabilistic broadcast algorithms. These algorithms (also known as
gossip-based algorithms) [Birman et al. 1999; Lin and Marzullo 1999; Sun and
Sturman 2000; Eugster et al. 2003] appear to be more adequate in the field of
large scale event dissemination than the “classical” strongly reliable approaches
[Hadzilacos and Toueg 1993]. To broadcast a message, a process sends the mes-
sage to a randomly selected subset of processes. Each process that receives the
message also sends the message to a randomly selected subset of processes, and
so forth. Though such gossip-based approaches have been proven to have good
scalability characteristics in terms of message throughput, it is not clear how
they scale in terms of membership management and message buffering. In par-
ticular they often rely on the assumption that every process knows every other
process. When managing large numbers of processes, this assumption becomes
a barrier to scalability. In fact, the data structures necessary to store the view
of such a large scale membership consume considerable amount of memory re-
sources, let aside the communication required to ensure the consistency of the
membership. Similarly it is not clear how message buffering and purging can
be handled in a scalable way without hindering the reliability.

Probabilistic membership. Membership management is sometimes dele-
gated to dedicated servers in order to relieve application processes [Aguilera
et al. 1999; Carzaniga et al. 2000; TIBCO 1999]. This only defers the prob-
lem, since those servers are limited in resources, as well, and it hampers the
very nature of a scalable peer-to-peer architecture. To further increase scal-
ability, the membership should also be split; in particular, every participat-
ing process should only have a partial view! of the system. That is, a given
process should only know a subset of all processes in the system. In order to
avoid the isolation of processes or the partition of the membership, especially
in the case of failures, membership information should nevertheless be shared
by processes to some extent: introducing a certain degree of redundancy be-
tween the individual views is crucial to avoid single points of failure. While
certain systems rely on a deterministic scheme to manage the individual views
[Lin and Marzullo 1999; van Renesse 2000], we introduce a non-deterministic
approach in this paper. The local view of every individual member consists of
a subset of members, which continuously evolves, but never exceeds a fixed
size (a maximum length). In short, after adding new processes to a view, the

IThe view of a process is the set of processes in the system known by the process.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 343

view is truncated to the maximum length by removing another set of entries.
To promote a uniform distribution of membership knowledge among processes,
every gossip message—besides notifying events—also piggybacks a set of pro-
cess identifiers which are used to update the views. The membership algorithm
and the effective dissemination of events are thus dealt with at the same level.

Message Buffering. In probabilistic broadcast algorithms messages are
buffered temporarily at each participating process. Various approaches have
been used to remove messages from buffers and limit the size of these buffers.
The simplest approach is to remove messages by random selection. Another ap-
proach is to gossip a message a fixed number of rounds after initial reception by
a process. Then the message is considered out-of-date and is garbage collected.
In these cases, the actual propagation of the messages among members is not
taken into account in the garbage collection procedure. The approach we pro-
pose consists in estimating the actual propagation of every message among the
members and then removing the most propagated messages from the buffers
when necessary. This approach leads to a better utilization of buffers.

Contributions. This paper presents a new probabilistic broadcast algo-
rithm, called Ipbcast: lightweight probabilistic broadcast. Our algorithm pre-
serves the inherent throughput scalability of traditional probabilistic broadcast
algorithms yet adds a new dimension of scalability in terms of membership
management and message buffering. We convey our claim of scalability in two
steps. First, we analyze our algorithm using a stochastic approach, pointing out
the fact that, with perfectly uniformly distributed individual views, the view
size has virtually no impact on the latency of event delivery. We similarly show
that, for a given view size, the probability of partitioning in the system de-
creases as the system grows in size. Second, we give practical implementation
results that support the analytical approach, both in terms of simulation and
prototype measurements.

For presentation simplicity, we proceed by describing a basic version of our
algorithm based on a completely randomized approach. Then optimization tech-
niques for message buffering and membership management are introduced.
Finally we present performance improvements in terms of message stability,
throughput and membership management.

It is important to notice that our membership and message buffering ap-
proaches are not intrinsically tied to our lightweight probabilistic broadcast (Ip-
beast) algorithm. We illustrate this by discussing how to apply them to further
improve the scalability of the well-known pbcast [Birman et al. 1999] algorithm.

Roadmap. Section 2 gives an overview of related probabilistic broadcast al-
gorithms. Section 3 presents a simple version of our Ipbcast algorithm and ex-
plains its underlying randomized approach. Section 4 analyzes our algorithm in
terms of scalability and reliability. Section 5 gives some simulation and practi-
cal results supporting the analysis. Section 6 presents optimization techniques
to improve the performance of the algorithm in terms of message buffering
and propagation. An optimization technique to improve the performance of the
algorithm with respect to membership management is described in Section 7.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

344 . P. Th. Eugster et al.

Section 8 discusses the effect of view size for reliability, and the general applica-
bility of our membership approach and optimization techniques on traditional
probabilistic broadcast algorithms.

2. BACKGROUND: PROBABILISTIC BROADCAST ALGORITHMS

The achievement of strong reliability guarantees (in the sense of Hadzilacos
and Toueg [1993]) in practical distributed systems requires expensive mech-
anisms to detect missing messages and initiate retransmissions. Due to the
overhead of message loss detection and reparation, algorithms offering such
strong guarantees do not scale over a couple of hundred processes [Piantoni
and Stancescu 1997].

2.1 Reliability vs Scalability

Gossip, or rumor mongering algorithms [Demers et al. 1987], are so-called epi-
demiologic algorithms (as being inspired by epidemics), a family of probabilistic
algorithms. These have been introduced as an alternative to “traditional” re-
liable broadcast algorithms. They were first developed for replicated database
consistency management [Demers et al. 1987]. The main motivation is to trade
the reliability guarantees offered by costly deterministic algorithms against
weaker reliability guarantees, but in return obtain very good scalability prop-
erties. The basic idea is very intuitive. Every process transmits its information
to a randomly selected subset of processes. Every process that receives this
information is said to be “infected”. This process, in turn, also transmits its
information to a randomly selected subset of processes.

The analysis of these algorithms is usually based on the theory of epi-
demics [Bailey 1975], where the execution is broken down into steps. Generally
probabilities are associated to these steps and the degree of reliability is ex-
pressed by a probability. For example, Birman et al. [1999] captured reliability
in the following way: the probability that a message reaches almost all is high,
the probability that a message reaches almost nobody is small, and the probabil-
ity that it reaches some intermediate number of processes is vanishingly small.
Ideally, the probabilities as well as the “almost” fraction above are precisely
quantifiable.

2.2 Decentralization

Decentralization is the key concept underlying the scalability properties of
probabilistic broadcast algorithms—the overall load of retransmissions is re-
duced by decentralizing the effort. More precisely, retransmissions are initiated
in most probabilistic broadcast algorithms by having every process periodically
(every T ms—step interval) send a digest of the messages it has delivered to a
randomly chosen subset of processes inside the system (gossip subset). The size
of the subset is usually fixed, and is commonly called fanout (F'). Probabilistic
broadcast algorithms differ in the number of times the same information is gos-
siped: every process might gossip the same information only a limited number of
times (repetitions are limited) [Birman et al. 1999] and/or the same information
might be forwarded only a limited number of times (hops are limited).

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 345

2.3 Memory Management

Memory management in probabilistic broadcast algorithms is a challenging
issue. In a highly scalable system, the memory requirement for a process should
ideally not change with the system size. Memory is however required to store
membership information and messages, until these messages are propagated
among “enough” members.

Early approaches [Golding 1992] do not prevent individual views of processes
from diverging temporarily, but assume that they eventually converge in “sta-
ble” phases. These views however represent the “complete” membership, and
this becomes a bottleneck at an increased scale.

2.4 Related Approaches

We exemplify the above-mentioned characteristics of broadcast protocols
through short descriptions of the Bimodal Multicast [Birman et al. 1999] and
Directional Gossip [Lin and Marzullo 1999] algorithms below.

Bimodal Multicast. This algorithm, also called pbcast, relies on two phases.
In the first phase, a “classical” best-effort multicast algorithm (e.g., IP multi-
cast) is used for a first rough dissemination of messages. A second phase assures
reliability with a certain probability, by using a gossip-based retransmission:
every process in the system periodically gossips a digest of its received mes-
sages, and gossip receivers can solicit such messages from the sender if they
have not received them previously.

The memory management problem in terms of membership is not directly
addressed in Birman et al. [1999], but the authors advocate the use of a com-
plementary algorithm called Astrolabe [van Renesse 2000]. This algorithm is a
gossip-based resource location algorithm for the Internet and can in that sense
be seen as a membership algorithm. This algorithm enables the reduction of
the view of each individual process: each process has a precise view of its im-
mediate neighbors, while the knowledge becomes less exhaustive at increasing
“distance”. The notion of distance is expressed according to the depth of the
processes in the hierarchy tree. Astrolabe however only considers the propaga-
tion of membership information and it is thus not clear how this membership
interacts with pbcast.

In the bimodal multicast algorithm, each member stores and gossips the
messages for a limited number of rounds. When this limit is exceeded, for a given
message, the actual message is purged. However, the “age” of the message, from
the time of its publishing is not considered. Instead, when a member receives
a message, it starts counting from zero irrespective of the real “age” of the
message or the degree of propagation.

Directional Gossip. This algorithm is especially targeted at wide area net-
works. By taking into account the topology of the network, optimizations are
performed. More precisely, a weight is computed for each neighbour process,
representing the connectivity of that given process. The larger the weight of
a process, the more possibilities exist thus for it to be infected by other pro-
cesses. The algorithm applies a simple heuristic, which consists in choosing

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

346 . P. Th. Eugster et al.

processes with higher weights with a smaller probability than processes with
smaller weights. That way, redundant sends are reduced. The algorithm is also
based on partial views, in the sense that there is a single gossip server per LAN
that acts as a bridge to other LANs. This however leads to a static hierarchy,
in which the failure of a gossip server can isolate several processes from the
remaining system.

Though two different gossip algorithms are used for wide area network gos-
siping and local area network gossiping, Directional Gossip does not address
the problem of buffering messages, till the messages are propagated among
“enough” members.

It is possible to implement less resource intensive broadcast algorithms in
terms of memory and network bandwidth based on Harary graphs [Lin et al.
2000]. But it is not clear how these algorithms perform in very large scale WANs
where membership is dynamic, that is, in an environment where the members
can join and leave the system at runtime. It would be a very difficult task to
construct the Harary graph each time the membership changes.

Lpbcast in perspective. In contrast to the deterministic hierarchical mem-
bership approaches in Directional Gossip or Astrolabe, our [pbcast algorithm
has a probabilistic approach to membership: each process has a randomly cho-
sen partial view of the system. Lpbcast is lightweight in the sense that it con-
sumes little resources in terms of memory and requires no dedicated messages
for membership management; gossip messages are used not only to dissemi-
nate event notifications and to propagate digests of received event notifications,
but also to propagate membership information.

We combine this membership randomization with effective heuristics for
purging out-of-date event notifications (messages) and membership informa-
tion. Lpbcast is completely decentralized in that no global knowledge of mem-
bership or message dissemination is used.

3. THE BASIC LIGHTWEIGHT PROBABILISTIC BROADCAST (LPBCAST)
ALGORITHM

In this section, we present a simple version of our Ipbcast algorithm for event
dissemination based on partial views and fully randomized memory manage-
ment. We present it as a monolithic algorithm. This is done in order to simplify
presentation, and to emphasize the possibility of dealing with membership and
event dissemination at the same level. As we pointed out earlier, our member-
ship management scheme can be applied separately for a particular application.

3.1 System Model

We consider a set of processes I1 = {p1, pg, ...}. Processes join and leave the
system dynamically and have ordered distinct identifiers. We assume for pre-
sentation simplicity that there is no more than one process per node of the
network.

Though our algorithm has been implemented in the context of a general
topic-based publish/subscribe environment [Eugster et al. 2000; Eugster et al.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 347

2001a], we present it with respect to a single topic, and do not discuss the effect
of scaling up topics. In other terms, IT can be considered as a single topic or
group, and joining/leaving IT can be viewed as subscribing/unsubscribing from
the topic. Such subscriptions/unsubscriptions are assumed to be rare compared
to the large flow of events, and every process in I1 can subscribe to and/or
publish events. Typically events are infrequent relative to their propagation
delay.

3.2 Gossip Messages

Our Ipbcast algorithm is based on non-synchronized periodic gossips, where a
gossip message contains several types of information. More precisely, a gossip
message serves four purposes:

Event Notifications. A message piggybacks event notifications received (for
the first time) since the last outgoing gossip message. Each process stores these
event notifications in a buffer named events. Every such event notification is
gossiped at most once. Older event notifications are stored in a different buffer,
which is only required to satisfy retransmission requests.

Event Notification identifiers. Each message also carries a digest (history)
of event notifications that the sending process has received. To that end, ev-
ery process stores identifiers of event notifications it has already delivered in
a buffer named eventlds. We suppose that these identifiers are unique, and
include the identifier of the originator process. That way, the buffer can be op-
timized by only retaining for each sender the identifiers of event notifications
delivered since the last identifier delivered in sequence.

Unsubscriptions. A gossip message also piggybacks a set of unsubscriptions
(see Section 3.4 for more details). This type of information enables the gradual
removal of processes that have unsubscribed from individual views. Unsub-
scriptions that are eligible to be forwarded with the next gossip(s) are stored in
a buffer named unSubs.

Subscriptions. A set of subscription information (see Section 3.4 for more
details) is attached to each message. These subscriptions are buffered in a
specific buffer named subs. A gossip receiver uses these subscriptions to update
its view, stored in a buffer view.

Note that none of the outlined data structures contain duplicates. That is,
trying to add an already contained element to a list leaves the list unchanged.
Furthermore, every list has a maximum size, noted |L|,, for a given list L
(VL, |L| < |L|;). As a prominent parameter, the maximum length of view
(Jview|,,) is denoted I.

3.3 Procedures

The algorithm is composed of two procedures. The first is executed upon recep-
tion of a gossip message, and the second is repeated periodically in an attempt
to propagate information to other processes.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

348 . P. Th. Eugster et al.

Gossip reception. According to the lists that are attached to each gossip
message, there are several phases in the handling of an incoming message
(Figure 1(a)).

I. The first phase consists in handling unsubscriptions. Every unsubscription
is applied to the individual view (view), and then added to the buffer named
unSubs. This buffer is then truncated to respect the maximum size limit
by removing random elements.

II. The second phase consists in trying to add not yet contained subscriptions
to the individual view. These are also eligible for being forwarded with
the next outgoing gossip message. Note that the subscriptions potentially
forwarded with the next outgoing gossip message, stored in the buffer subs,
are a random mixture of subscriptions that are present in the view after the
execution of this phase, and subscriptions removed to respect the maximum
size limit of view. A process that has subscribed and that is also active in
gossiping, gossips about itself. This is done by inserting its subscriptions
in subs. Finally, subs is also truncated to respect the maximum size limit.

III. The third phase consists in delivering, to the application, event notifica-
tions whose ids have been received for the first time with the last incoming
gossip message. Multiple deliveries are avoided by storing all identifiers of
delivered event notifications in eventlds, as previously outlined. Delivered
event notifications are at the same time eligible for being forwarded with
the next gossip. If there is an Id of an event not received so far in an incom-
ing gossip, an element containing that Id, the current round, and the sender
of the gossip, is inserted into retrieveBuf for the purpose of retrieving the
event notification later.

Gossiping. Each process periodically (every T ms) generates a gossip
message—as described in Section 3.2—that it gossips to F' other processes, ran-
domly chosen among the individual view (view) (Figure 1(b)). This is done even
if the process has not received any new event notifications since it last sent
a gossip message. In that case, gossip messages are solely used to exchange
digests and maintain the views uniformly distributed. The network thus expe-
riences little fluctuation in terms of the overall load due to gossip messages, as
long as T' and the number of processes inside IT remain unchanged.

Retrieving event notifications. The retrieveBuf is processed as shown in
Figure 1(c) to retrieve event notifications. As stated earlier, when receiving the
Id of an undelivered event, an element containing that Id, together with the
round number and the Id of the process from which the event Id was received is
inserted into the retrieveBuf when processing the gossip messages (Figure 1(a),
Phase 3). Then for each element in retrieveBuf, a test is done to check whether
process p; has waited enough (k rounds) before start fetching the event from
others. Then another test is done (using eventlds) to check whether during
the period of waiting the event notification was received in a subsequent gos-
sip message. If the event notification was not received, the process p; asks for
the event notification from the process, from which p; came to know about the

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 349

upon RECEIVE (gossip) by process p; every T ms at process p;

{Phase 1: Update view and unSubs with unsub- gossip.subs <— subs U {p; }
scriptions} gossip.unSubs <— unSubs
for all unsub € gossip.unSubs do gossip.events <— events
view <— view \ {unsub} gossip.eventlds <— eventlds
subs < subs \ {unsub} choose F' random members target, , ... targetg in
unSubs «— unSubs U {unsub} view
while [unSubs| > |unSubs|,, do for all j € [1..F'] do
remove random element from unSubs SEND(target;, gossip)
{Phase 2: Update view with new subscriptions} events < ()
for all newSub € gossip.subs A newSub # p; do upon LPBCAST(e)
if newSub ¢ view then events < events U {e}
view <— view U newSub
subs < subs U newSub
while |view| > [do
target <— random element in view
view <— view \ {target}
subs <— subs U {target}
while |subs| > |subs|,, do
remove random element from subs
{Phase 3: Update events with new notifications}
for all e € gossip.events do
if e.id € eventlds then
events < events U {e}
LPB-DELIVER(e) sender
eventlds < eventlds U {e.id} if no reply from element.gossip-sender
for all e.id € gossip.eventlds do within r rounds then
if e.id & eventlds then asks from a randomly selected process
element.e.id < e.id if - receive e then
element.round <— currentRound get element.e.id from element.e.source
element.gossip-sender <— gossip.sender once received e
retrieveBuf < retrieveBuf U {element} events < events U {e}

(b) Gossip emission.

for all element € retrieveBuf do
if currentRound-element.round > k then
if element.e.id ¢ eventlds then
ask element.e.id from element.gossip-

while |eventlds| > |eventlds|, do
remove oldest element from eventlds

while |events| > |events|,, do
remove random element from events

LPBDELIVER(e)
eventlds « eventlds U {e.id}
else
retrieveBuf < retrieveBuf \ {element}

(a) Gossip reception.

(c) Retrieving events.

Fig. 1. Ipbcast algorithm.

event. If the event notification is not received from that process (e.g., due to
crash), a randomly selected process (from view) is asked for the event notifi-
cation. If that also failed, then the original sender of the event notification is
asked for the event notification. The retrieval phase relies on the assumption
that messages are stored for a limited interval of time at each process once a
message is received by that process. A discussion on an adequate storage du-
ration, and which messages are to be stored locally can be found in Xiao et al.
[2002] and Xiao and Birman [2001].

3.4 Subscribing and Unsubscribing

For presentation simplicity we have not reported the procedures for subscribing
and unsubscribing to IT in Figure 1(a). In short, a process p; that wants to

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

350 . P. Th. Eugster et al.

subscribe IT must know a process p; that is already in I1. Process p; will send
its subscription to that process p;, which will gossip that subscription on behalf
of p;. If the subscription of p; is correctly received and forwarded by p;, then
p; will be gradually added to the system. Process p; will experience this by
receiving more and more gossip messages. Otherwise, a timeout will trigger
the re-emission of the subscription request.

Similarly, when unsubscribing, the process is gradually removed from in-
dividual views. To avoid the situation where unsubscriptions remain in the
system forever (since unSubs is not purged), there is a timestamp attached to
every unsubscription. After a certain time, the unsubscription becomes obso-
lete. Here we assume that an unsubscription and then a subscription again
by the same process are sufficiently spread apart in time. It is important to
notice that this scheme is not applied to subscriptions: these are continuously
dispatched in order to ensure uniformly distributed views.

As specified in 3.3, a process that has subscribed and correct, gossips about
itself: if this is not done for example by a failed process, there is a very high
probability that the process is to be removed from all the views in the system
after a certain amount of time, due to the evolving nature of the membership
scheme.

4. ANALYTICAL EVALUATION

This section presents a formal analysis of our Ipbcast algorithm. The goal is to
measure the impact of the size [of the individual views of the processes both
(1) on the latency of delivery and (2) on the stability of our membership. The
analysis differs from the one proposed in Birman et al. [1999], precisely because
our membership is not global and event notification forwarding is not limited
to a particular number of times (hops are not limited), and event notifications
can be forwarded several times by the same process without a strict limit (repe-
titions are not limited). Here, we do not distinguish between event notification
and event notification identifiers; that is, we do not consider retransmissions.
We first introduce a set of assumptions without which the analysis becomes
extremely tedious, but which have very little impact on its validity.

4.1 Assumptions

For our formal analysis, we consider a system IT composed of n processes, and
we observe the propagation of a single event notification. We assume that the
composition of IT does not vary during the run (consequently rn is constant). As
mentioned, and according to the terminology applied in epidemiology, a process
that has delivered a given event notification will be termed infected, otherwise
susceptible.

The stochastic analysis presented below is based on the assumption that
processes gossip in synchronous rounds, and there is an upper bound on the
network latency, which is smaller than a gossip period T'. T is furthermore
constant and identical for each process, just like the fanout F. We assume
furthermore that failures are stochastically independent. The probability of a
message loss does not exceed a predefined ¢ > 0, and the number of process

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 351

crashes in a run does not exceed f < n.The probability of a process crash during
a run is thus bounded by t = f/n. For the following computations and also for
the simulations in the next section, we will assume t = 0.01 and ¢ = 0.05. We
do not take into account the recovery of crashed processes, nor do we consider
Byzantine (or arbitrary) failures.

Assume that at round r, each process p has an independent uniformly dis-
tributed random view of size [of known subscribers: the probability that a given
process belongs to the view of p; at round r is [/(n — 1). The probability that
a given process p; belongs to the view of p; at round r + 1 is the sum of the
probability that p; was in the view of p; at round r and was not removed during
round 7 +1 and the probability that p; entered to the view as a result of a gossip
reception at round r + 1:

l l (1o l l
n—1|subs|,F +1 n—1)n-1

Thus, for I « |subs|,, F, the probability can be roughly estimated as [/(n — 1)
which corresponds to the uniform distribution. For the analysis below, we indeed
take the uniform distribution of views as an assumption on the model. In other
terms, every combination of / processes within (n — 1) processes (according to
the algorithm presented in Figure 1(a), a process p; will never add itself to its
own local view view;) is equally probable for every individual view. For reasons
of simplicity, we will also refer to such views as uniform views (though this is a
language abuse). The expected number of processes that know a given process
is thus equal to /. These views are not constant, but continually evolving.

4.2 Event Propagation

Let e be an event produced ([pb-cast) by a given process. We denote the number
of processes infected with e at round r as s, € [1..n]. Note that when e is first
introduced into the system at round r = 0, we have s, = 1.

We define a lower bound on the probability that a given susceptible process
is infected by a given gossip message as:

l F
p = (n_1> (l—>(1—e)(1—t)

= (F)(l—e)(l—r)
n—1

(1)

In other terms, p is expressed as a conjunction of four conditions, namely that
(1) the considered process is known by the process that gossips the message,
(2) the considered process is effectively chosen as target, (3) the gossip message
is not lost in transit, and (4), the target process does not crash. As a direct
consequence of the uniform distribution of the individual views, p does not
depend on /.

Accordingly, ¢ = 1 — p represents the probability that a given process is
not infected by a given gossip message. Given a number i of currently infected
processes, we are now able to define the probability that exactly j processes will
be infected at the next round (j —i susceptible processes are infected during the

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

352 . P. Th. Eugster et al.

140 T T T T
F=3
F=
F=5
120 ST S—

100

80

processes

60

40

20

rounds

Fig. 2. Analysis: expected number of infected processes for a given round with different fanout
values.

current round). The resulting Markov Chain is characterized by the following
probability p;; of transiting from state i to state j:

pij = Plssp1=Jls, =1)

i L (2)
B (jfi)(l _ qL)J—qu(n—j) j=>i
1o j<i
The distribution of s, can then be computed recursively:
1 j=1
P = / =
S0=) { 0 j>1
(3)
P(sp1=J) = ZP(Sr = 1)pjj
i<j

4.3 Gossip Rounds

By considering that the two parameters 7 and ¢ are beyond the limits of our in-
fluence, the determining factors according to the analysis are the fanout F and
of course the system size n.

Fanout. Figure 2 shows the relation between F' and the number of rounds
it takes to broadcast an event to a system composed of n = 125 processes. The
figure shows that increasing the fanout decreases the number of rounds nec-
essary to infect all processes. When the product of the fanout and the number
of rounds a message is being gossiped in the system is too high, there will be
more redundant messages received by each process, which limits performance

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 353

6.8 -

6.6 -

6.4

6.2

6 |

rounds

5.8

5.6

54

5.2 1 L L L L L 1 1
100 200 300 400 500 600 700 800 900 1000

processes

Fig. 3. Analysis: expected number of rounds necessary to infect 99% of I1, given a system size n.

(and overloads the network). Here, we consider the messages that are already
disseminated “enough” and that are being gossiped further as redundant mes-
sages. These messages do not contribute to the dissemination process or to im-
prove the reliability. Furthermore, F' is in our case tightly bound, since F </
must always be ensured. The goal of this paper however is not to focus on find-
ing the optimal value for F. In the following simulations and measurements,
the default value for the fanout will be fixed to F = 3. The optimal choice of
fanout value is discussed within a different context in Kermarrec et al. [2003].

System size n. The number of gossip rounds it takes to infect all processes
intuitively depends on the number of processes in the system. Figure 3 presents
the expected number of rounds necessary for different system sizes. The figure
conveys the fact that the number of rounds increases logarithmically with an
increasing system size, as detailed in Bailey [1975].

View size [. According to Equation 2, the view size [does not impact the
time it takes for an event notification to reach every member. This leads to the
conclusion that, besides the condition F < [, the amount of knowledge concern-
ing the membership that each process maintains does not have an impact on
the algorithm performance. The expected number of rounds it takes to infect
the entire system depends on F, but not on /. This consequence derives directly
from our assumption that the individual views are uniform. Intuitively, the al-
gorithm shown in Figure 1(b) supports this hypothesis by having the following
properties: (1) each process periodically gossips, and (2) each process adds its
own identity to each gossip message. Based on experimental results, we will
discuss the validity and impact of this assumption in more detail in Sections 5
and 8.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

354 . P. Th. Eugster et al.

4e-13 T T T T T T T T T

3.5e-13 -

3e-13 [

2.5e-13 -

2e-13 |

Probability

1.5e-13 -
le-13 |

5e-14

0 5 10 15 20 25 30 35 40 45 50

processes in the partition

Fig. 4. Analysis: probability of partitioning in systems of different sizes.

4.4 Partitioning

One could derive that the view size [can be chosen arbitrarily small (provided
that the requirements with respect to F' are met). This is rather dangerous,
since with small values for [the probability of system partitioning increases.
This occurs whenever there are two or more distinct subsets of processes in
the system, in each of which no process knows about any process outside its
partition.

Probability of partitioning. The creation of many partitions can be seen as
partitioning the system recursively. In other terms, by expressing an upper
bound on the probability of creating a partition of size i (i > [+ 1) inside the
system, we also include the creation of more than two subsets. The probability
W(i, n,l) of creating a partition of size ¢ inside a system of size n with a view

size of [is given by the following equation:
Lo n—i—1y\ P
) ((i >> @
(")

: n\ (1)
\D(L,n,l):(,) —
ZANGD
It can easily be shown that, for a fixed system size n, ¥(i, n,!) monotonically
decreases when increasing /. Similarly, for a fixed view size [, ¥(i, n, /) mono-
tonically decreases when increasing n. Figure 4 depicts this for n, by fixing [to
3. The fact that the membership becomes more stable with an increased n can
be intuitively reproduced since, with a large system, membership information
becomes more sparsely distributed, and the probability of having concentrated
exclusive knowledge becomes vanishingly small.

Intime. Accordingtoour model, the distribution of membership information
in a certain round does not depend on the distribution in the previous round.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 355

Thus we can define the probability that there is no partitioning up to a given

round r as:
.

¢pn,l,r)=|1- > WG,n,l) (5)

l+1<i<|n/2]

This probability decreases very slowly with r. It takes ~ 102 rounds to end up
with a partitioned system with the probability of 0.9 with n = 50 and [= 3.
For a given expected system run-time, we can easily compute the minimal view
size that guarantees the absence of partitioning with a given probability.

A priori, it is not possible to recover from such a partition. To avoid this
situation in practice, we elect a very limited set of privileged processes, which
are constantly known by each process. They are periodically used to “normalize”
the views (in particular for bootstrapping). Alternatively, we could use a set
of dedicated processes to collaborate in keeping track of the total number of
processes.

5. EXPERIMENTAL RESULTS

In this section, we compare the analytical results obtained in the previous
section with (1) simulation results and (2) results collected from measurements
obtained with our actual implementations. In short, the results show a very
weak dependency between [and the degree of reliability achieved by Ipbcast,
but we can neglect this dependency in a practical context.

In our test runs, we did not consider retransmissions, that is, once a process
has received the identifier of an event notification, the event notification itselfis
assumed to have been received. This has been done to comply with related work
(in some cases it is sufficient for the application to know that it has missed some
message(s), and in other cases, subsequent messages can replace the missed
messages [Orlando et al. 2000]).

5.1 Simulation

In a first attempt, we have simulated the entire system on a single machine.
More precisely, we have simulated synchronous gossip rounds in which each
process gossips once. The results obtained from these simulations support the
validity of our analysis.

Number of gossip rounds. As highlighted in the previous section, the total
number of processes n has an impact on the number of gossip rounds it takes to
infect all processes. Figure 5(a) conveys the results obtained from our analysis
by comparing them with values obtained from simulation, showing a very good
correlation.

Impact of[. According to the analysis presented in the previous section, the
size [of the individual views has no impact on the number of gossip rounds it
takes to infect every process in the system. Figure 5(b) reports the simulation
results obtained for different values of [in a system of 125 processes. It conveys
a certain dependency between [and the number of gossip rounds required

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

356 . P. Th. Eugster et al.

500 T T T e

n=125, practice
n=250, theory

n=250, practice :
n=500, theory -———— 7

n=500, practice -------

450

400

@» W
(=4 a1
(=] (=4

T T

processes
(]
a1
(=1
T

200

150

100

rounds

(a) Analysis vs simulation.

120

80

60 [

processes

0 il I“‘ 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

rounds

(b) Number of rounds necessary to infect a system with different values
for /.

Fig. 5. Simulation results.

for the successful dissemination of an event in II, slightly contradicting our
analysis. This stems from the fact that we have presupposed uniform views
for the analysis, and have considered these as completely independent of any
“state” of the system. An exhaustive analysis would have to take into account
the exact composition of the view of each process at each round. This would
however lead to a very complex Markov Chain, with an impracticable size.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 357

Rate = 40 msg/rounld; Notification list size= 60

Reliability
o

e

o N

0.8 1 1 I
15 20 25 30 35

View size

Fig. 6. Measurements: degree of reliability.

Given the very good correlation between simulation and analysis, assuming
independent and uniform views seems reasonable.

5.2 Measurements

We present here concrete measurements that attempt to capture the degree
of reliability achieved with Ipbcast, and confirm the results obtained from
simulation.

Test environment. Our measurements involved two LANs with, respectively
60 and 65 SUN Ultra 10 (Solaris 2.6, 256 Mb RAM, 9 Gb harddisk) workstations.
The individual stations and the different networks were communicating via
Fast Ethernet (100 Mbit/s). The measurements we present here were obtained
with all 125 processes; in each round 40 new events were injected into the
system. To conform to our simulations, ' was fixed to 3 and the size of the
events buffer was set to 60.

Impact of the view size. Figure 6 shows the impact of / on the degree of
reliability achieved by our algorithm. The measure of reliability is expressed
here by the probability for any given process of delivering any given event
notification (1 — B, cf. Section 2). The reliability of the system seems to deteri-
orate slightly with a decreasing value for /. Intuitively this is understandable,
since our simulation results have already shown that latency does increase
slightly by decreasing /. With an increased latency, the probability that a given
message is purged from all buffers before all processes have been infected be-
comes higher.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

358 . P. Th. Eugster et al.

broadcast(m,) deliver(m,)
l purge((m,,1)] gossipl(m;,1)]
i 1(m,7‘ [(m0), (my, D) [Gmy 0] Y:,,l)l >
A % >
Tgnssipl(mz,l)l
broadcast(m,)

Fig. 7. Age-based purging scenario.

5.3 Optimization

In Ipbcast, every process locally buffers information about published messages
and membership. To preserve scalability, the entities in the buffers need to be
removed periodically. So far we considered a simple strategy where buffers are
purged in a randomized manner. Instead of randomization it would be better
to remove information that is well disseminated among members and keep the
least disseminated information.

In Ipbcast, there are two types of buffers: the events buffer for buffering
messages (event notifications) and the subs buffer for buffering membership
information. In the next two sections we discuss optimization schemes that are
applicable to each of these two buffers. Though for clarity these two optimization
techniques are discussed separately, it should be noted that they can be applied
together.

6. AGE-BASED MESSAGE PURGING

Age-based message purging is an optimization that is applied to make a good
use of events buffers; an events buffer stores messages (published events) once
received by processes as described in Section 3.

6.1 The Principle

Here, the events are referred to as messages (meaning application-generated
messages) that are propogated using Ipbcast. In age-based message purging,
the idea is to associate with every message some integer, corresponding to the
number of rounds the message has spent in the system by the current moment.
Roughly speaking this number represents the age of the message and is updated
in every gossip round. Every process participating in a gossip-based information
exchange periodically receives updates and stores some of them in the message
history buffer. Informally, the age reflects the dissemination degree of a message
in the system.

A scenario of age-based memory management is presented in Figure 7 for
a simple case where the buffer size is limited to 1 message. At process p;, the
scenario can be described as follows:

I. Message m; is broadcast and an item (m1, 0) is stored in the buffer. The
age of the message m; is equal to 0 since it has not been gossiped yet.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 359

II. Gossip message (mg, 1) is received. The age of ms is equal to 1 because mg
has been gossiped once.
ITI. Message mg is delivered to the application layer This is done only if ms is
not already delivered.

IV. Item (mg, 1) is purged from the buffer since it is “the oldest” one.

V. The age of the message m; is incremented and gossip message (mq, 1) is
sent.

In the purging procedure, useful messages are kept in the buffers with higher
probability than the noisy ones. Noisy messages represent the event notifica-
tions that are already disseminated among “enough” processes and that need
to be purged out from buffers. All message purging decisions are taken locally
and do not use any form of agreement with the rest of the system.

6.2 Optimized Ipbcast

Figure 8 presents our variant of Ipbcast optimized with aged-based purging.
We describe here only the part relevant to age-based message purging and we
do not recall other aspects of [pbcast introduced in Section 3.

Broadcast message. 'When a message is broadcast (Ipbcast), its age value is
initialized to 0. The message is then added to the message history events and
if its maximal size is exceeded, the “oldest” elements are purged. This is done
by the auxiliary function REMOVE_OLDEST_NOTIFICATIONS() (Figure 9(a)).

Gossip transmission. This phase is executed periodically (every T seconds)
and includes randomly choosing the gossip target and sending the gossip. The
ages of stored messages are incremented.

Gossip reception. When a received gossip is processed by process p;, the
messages that have not been seen before by process p; are delivered and stored
in the buffer. If a received message has been seen before, and the copy of it is
stored in the buffer, its age is updated: the maximum of the ages of received and
stored messages is taken. As before, REMOVE_OLDEST_NOTIFICATIONS() is invoked to
purge the “oldest” items.

When choosing an element to remove from the buffer, two criteria are applied
(see auxiliary function REMOVE_OLDEST_NOTIFICATIONS() in Figure 9(a)). A message
is purged if: (1) (out-of-date) the message is received a long time ago, with
respect to more recent messages from the same broadcast source. This period of
time is measured in gossip rounds and compared with the LoNG_AGO parameter.
(2) (oldest) the message has the largest age parameter in the buffer.

The truncating criteria are applied sequentially: “out-of-date” first. In other
words, if after purging all out-of-date messages, the buffer limit is not exceeded,
no further purging occurs.

6.3 Evaluation Criteria

In this section we discuss the evaluation criteria and the measurement envi-
ronment for comparing the improved version of our Ipbcast algorithm with our
basic version of Ipbcast (Section 3).

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

360 . P. Th. Eugster et al.

Process p;:

upon LPBCAST(e)
eage« 0
REMOVE_OLDEST_NOTIFICATIONS()

in every T' ms
for all e € events do
e.age<—e.agetl

SEND_GOSSIP()

upon RECEIVE (gossip)

{Update the ages}
for all e € gossip.events do
if ¢’ € events such that
¢/.id = e.id and ¢’ .age < e.age then
e’ .age < e.age
REMOVE_OLDEST_-NOTIFICATIONS()

for all me gossip.subs do
if m’ € view such that
m’ =m then
m’ .Frequency < m’ .Frequency + 1
else
m.Frequency <— m.Frequency + 1
view < view U m
if m’’ € subs such that
m’/ =m then
m’’ Frequency < m'’.Frequency + 1
else
m.Frequency <— m.Frequency + 1
subs < subs U {m}
while |view| > [do
target <— SELECT_PROCESS (view)
view < view \ {target}
subs < subs U {target}
while |subs| > |subs|,, do
target <— SELECT_PROCESS (subs)
subs <— view \ {target}

Fig. 8. The optimized Ipbcast.

The measurements we present in Section 6.4 and Section 7.4 have been
obtained with 60 processes. The message history buffer size at every process is
limited to 30. The fanout, the number of other processes each process gossips to
per round, is fixed to 4. For modelling failures, we use a process crash ratio equal
to 5% and a message loss ratio equal to 10%. Where not explicitly mentioned, the
broadcast rate is 30, that is, 30 new messages are introduced into the system per
gossip round. In this section as well as in the next we used only 60 as opposed

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 361

REMOVE_OLDEST_-NOTIFICATIONS()
{Out-of-date}

while |events| > |events|,,and events contains found < false

e and ¢ such that (e.source = ¢ .source and (e.id avg < average of Frequency in the List

SELECT_PROCESS (List)

- ¢’.id) > LONG_AGO) do while (- found) do
events < events/ {¢’} target <— random element in List
if target.Frequency > k(avg) then
A
{ge} found=true

while |events| > |events|,, do
let ¢’ € events such that
¢/ .age = max.cevents(€.age)

events < events/ {¢'}

else
target.Frequency < target.Frequency + 1

return target

(b) SELECT_PROCESS function.
(a) REMOVE_OLDEST NOTIFICATION func-

tion.

Fig. 9. Auxiliary functions.

to 125 processes as in the previous experiments due to the large amount of data
that need to be stored in the secondary storage device. This is the data used for
the analysis.

The criteria we use for the comparative analysis are the following:

Delivery ratio. 'This is the ratio between the average number of messages
delivered by a process per round and the number of messages broadcast per
round. We analyze long run behaviour of simple and optimized versions of the
algorithm comparing this ratio. The delivery ratio represents the efficiency of
the algorithm in terms of message dissemination.

Redundancy. We measure the proportion of redundant messages that are
received by the same process in a given round.

Throughput. We measure the throughput of a broadcast algorithm as a
maximum broadcast rate the algorithm can stand, providing certain stability
level. In our case the stability level is fixed to 90%. A message becomes stable
when it has been delivered by all or a predefined part of the processes, at which
point it can be discarded. In this experiment we considered messages that are
delivered to all the processes. In other words, we found the throughput at which
90% of the produced messages are delivered to all the processes. The criterion
captures the relationship between the throughput stability and minimal view
size that guarantees it (for two schemes of garbage collecting).

Fault tolerance. We model system failures and estimate the delivery ratio
to demonstrate that our age-based memory management does not impact the
high level of fault tolerance, an inherent property of gossip-based algorithms.

6.4 Results

We present here experimental results for the two versions (Ipbcast and op-
timized Ipbcast) in our prototype implementation. The practical evaluation

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

362 . P. Th. Eugster et al.

1.2 T T T T Age-blased purginlg
Random purging --—----—
1.1 |
1 |
| it | | ’
0.9 ‘ i

delivery ratio

200 300 400 500 600 700 800

#round

Fig. 10. Measurements: delivery ratio of initial (random purging) and optimized (age-based purg-
ing) versions of lpbcast.

results clearly confirm the fact that our age-based purging scheme enhances the
performance of the broadcast algorithm in terms of message delivery efficiency
and throughput.

In our measurements, 30 messages are published at each round. Messages
can be delivered a few rounds after publication. As a result, some particular
processes can deliver more than 30 messages in some particular rounds (i.e.
some messages published in the present round as well as some previously pub-
lished messages). Because of this, delivery ratio can be more than 1 in some
particular rounds.

We can summarize the improvements as follows:

Delivery ratio. Figure 10 depicts the message delivery efficiency provided
by the broadcast algorithms implementing age-based and randomized buffering
schemes. The delivery ratio for age-based buffering is considerably higher.

Throughput. The throughput estimation presented in Figure 11 shows that
age-based buffering enables a broadcast algorithm to improve the throughput
by at least a factor of 2 while providing the same level of message stability.

Reduction of noise. Figure 12 shows that the proportion of redundant mes-
sages given by our age-based message purging scheme is smaller in comparison
with random purging.

Robustness. Despite process crashes and message losses, reliability is not
sacrificed by our age-based message purging (Figure 13): the average delivery
ratio is almost the same for both age-based and randomized buffering schemes.

Our age-based message purging scheme does not decrease the useful re-
dundancy level of an algorithm. The average number of gossips per round is
the same for a randomized and an age-based message purging scheme: it does

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 363

80 T T T

Agel-based purgilng -
Random purging ---——--

Throughput for 90% stability

20 25 30 35 40 45 50

Buffer size

Fig.11. Measurements: throughput of initial (random purging) and optimized (age-based purging)
versions of Ipbcast (message stability level 90%).

0.84 , : . . . |
Age-based purging ——
Random purging --------

0.82

0.8

0.78

redundancy level

0.76

0.74

0.72 1 I 1 1 " |
200 300 400 500 600 700 800

round

Fig. 12. Measurements: redundancy level for initial (random purging) and optimized (age-based
purging) versions of Ipbcast.

not depend on the way the messages are buffered. At the same time, the dis-
tribution of messages that are gossiped is different: when age-based message
purging is implemented, it is less probable to gossip a noisy message compared
to an algorithm where a random approach is used. This is the source of the
considerable performance gains shown in Figures 10 and 11.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

364 . P. Th. Eugster et al.

1.15 T T T T

System with failures
System w/o failures ---------

|

|
il
Ll

2
g
>
b
i
2
°
° if fl
| i
| El
0.85 | i
0.8
0.75 1 L L | L 1
200 300 400 500 600 700 800
round

Fig. 13. Measurements: impact of failures on overall delivery ratio. Process crash ratio=>5%,
message loss ratio=10 %.

We should mention that for the practical evaluations, we study here the
circumstances that are somewhat beneficial for the age-based buffering scheme:
we consider only the gossip-based dissemination phase (there is no “unreliable”
phase as in Birman et al. [1999]) and we model the high and regular broadcast
rate. We have run a number of experiments in less stressful conditions, in
particular, when the broadcast rate is small with respect to the buffer sizes.
Those results are not so impressive, although the advantages of our age-based
memory management scheme over a random one still hold.

7. FREQUENCY BASED MEMBERSHIP PURGING

Frequency-based membership purging is an optimization that is applied to subs
buffers; the subs buffer stores information about subscribers once received by
processes as described in Section 3.

7.1 The Principle

In the simple version of our [pbcast algorithm, the membership information is
stored in the buffer subs and, as it grows, the entities are removed from it by
random selection. However there could be well known members in the group as
well as less known members. For example, a newly joined member will not be
known by most of the members initially. If we use random selection to maintain
the size of the subs buffer, there could be a possibility where a lesser known
member in the group is removed from the buffer, while keeping the information
about well known members. For this reason, a new member would not be able
to join the group “quickly”. Apart from this, as lesser known members could
be removed from the buffers, there could be isolation where a member is not
known by any other member.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 365

Py

Subscription (m1) Subscription (m2)

P,

Subscription (m2) Subscription (m3)

Subscri&tion (m2)

Py L
ml.Freq=1 ml.Freq=1 mlFreq=l m2 will be
selected for
m2.Freq=1 m2.Freq=3 ;
removal

m3 . Freq=1

Fig. 14. Simple example of memory management for membership information.

To avoid this drawback, we suggest purging membership information based
on a heuristic value. In this approach, an integer known as frequency is
associated with each membership information stored in the subs buffer. The
frequency variable represents the number of times the information about a
member is heard by a particular member. When elements from the subs buffer
need to be removed, the frequency variable is used in combination with a ran-
dom selection. We use a random selection to promote uniform distribution of
membership information.

Figure 14 shows a simple scenario of frequency-based memory management
for membership. The description of the events at p, is as follows:

I. Process p4 receives subscription information about member m; and puts
it into the subs buffer after setting the frequency associated with m; to 1.
II. Subsequently, p4 receives subscription information about member mg three
times. Each time p4 increments mo.frequency by one.
III. psy receives subscription information about member mg3 and sets
mg.frequency=1.
IV. If we assume that the maximum size of subs buffer is 2 (in number of

elements), once mg is received, mg will be selected for removal by SELECT_
PROCESS() function.

7.2 Optimized Ipbcast

Figure 8 presents a variant of Ipbcast. We describe here the part relevant to
frequency-based membership purging.

I. Subscribe: p; sends subscription message m after setting m.frequency to 0.
II. Once a gossip message is received by p; (Figure 8):
1. if m is in the view v, p; increments the frequency of m contained in v;
if m is not in v then p; adds m to the v and increments the value of
frequency.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

366 . P. Th. Eugster et al.

2. if m is in the subs s, p; increments the frequency of m contained in s;
if m is not in the s then p; adds m to s and increments the value of
frequency.

3. when the size of the view v or subs is above the allocated value, p;
truncates the view v or subs by selecting an element using the SE-
LECT_PROCESS function.

III. The operation of the SELECT_PROCESS function is shown in Figure 9(b)
and described below.
1. p; finds the average (avg) of the frequency of all the elements.
2. p; selects an element (e) from the given List randomly.
3. Ife.frequency > k(avg) then return e as the selected value; Else incre-
ment e.frequency by one and go to Step II and proceed. 0<k<=1

7.3 Evaluation Criteria

In this section we discuss the evaluation criteria and the measurement envi-
ronment we used to compare the improved version of [pbcast with our basic
version (Section 3), with respect to frequency-based membership purging.

The measurements we present here have been obtained with 60 processes.
The fanout—the number of other processes each process gossips to per round,
is again fixed to 4.

The criteria we use for the comparison are:

Propagation Delay. We measure how fast information about a new member
propagates among other members, with and without optimization. This repre-
sents how fast a new member can effectively join the group.

Membership Management. Removal of process Ids from subs is analyzed to
check the performance improvement in terms of buffer utilization due to the
optimization. Degree of propagation of removed process Ids are measured. The
number of times membership information about a particular process is seen by
other processes is considered as the degree of propagation. This is equivalent to
the value of Frequency associated with each process Id. Process Ids are removed
from the subs list when their size grows beyond the limited size. Once this
is done if lesser known processes are removed from the list it could lead to
isolation. By using optimization we try to avoid this. To test the effectiveness of
the optimization we considered a large number of removals from the subs list
and found the degree of propagation for each removed process Id (i.e., the value
of Frequency of each removed Id).

7.4 Results

The simulation results show that frequency-based membership management
enhances the membership information propagation. The improvements ob-
tained due to the optimization can be summarized as follows.

Reduction of propagation delay. Figure 15 is a graph of the case where
a new member sends a subscription request at time=0; it plots the number of
members who came to know about the new member against time. It can be seen

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 367

60 T T T r . . i
Optimised Algorithm ——
Non Optimised Algorithm --------

40
30

20

of informed processes

10

0 e L 1 L 1 L L
0 2 4 6 8 10 12 14 16

round

Fig. 15. Propagation delay for membership information for the original and optimized versions of
the algorithm.

50 T T T T T T T T .
Optimized Algorithm ——
45 Non Optimized Algorithm --------

40
35
30

25

20

Degree of propagation

15

10 f

L L
0 100 200 300 400 500 600 700 800 900 1000

Number of removals

Fig. 16. Measurements: Degree of propagation of removed messages.

that information about new members propagates quickly with the optimized
version.

Membership Management. Figure 16 presents the degree of propagation
of process Ids that were removed from subs buffer with two versions of the
algorithm. In the figure the y-axis represents the degree of propagation (i.e.,
the number of times a process heard about another process, which is equal
to the value of Frequency) and the x-axis represents the number of removals

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

368 . P. Th. Eugster et al.

we considered. To make the difference clear, plotting was continued for the
optimized version for 1000 removals while it was stopped after 700 removals
for the other. This helps one to see the difference clearly. From Figure 16 it can
be seen that in the non-optimized version process Ids are purged even when the
degree of propagation is less than 5. Such a scenario is not experienced in the
optimized scheme since it stops purging process Ids that have a lesser degree
of propagation.

As a result, it can be seen that with the original version, members are re-
moved even if the degree of propagation is less. But with the optimized version,
if the degree of propagation is less, those members are kept in the subs buffer.

As seen in Figure 16, the lesser known membership information has a higher
probability to survive in the buffers. As a result, isolation can be avoided. This
is because when the information about a member is diminishing in the system,
that information has a greater chance to be in the buffers.

In areal system, there would be members (subscribers as well as publishers)
joining the system frequently, that is the membership is dynamic. An optimiza-
tion that lowers the propagation delay of membership information will be very
useful for a dynamic system.

8. DISCUSSION

This section discusses our [pbcast algorithm with respect to “perfectly” uniform
views and compares it to the well-known pbcast algorithm [Birman et al. 1999],
in particular by combining pbcast with our membership approach.

8.1 Towards “Perfect” Views

Simulations performed with artificially generated independent uniform views
have shown that there is virtually no dependency between latency of delivery
(and thus the degree of reliability) and the size of the individual views. The
views obtained in practice with [pbcast however appear to not be completely
uniform and independent.

One interpretation of the slight dependency between latency and [is that,
despite the random truncating of views, there remains a correlation between
individual views both in time (view; of process p; at round r depends on view;
at round r — 1) and in space (view; of process p; depends on view; of process
pj):

To avoid this effect, we have tried in a first attempt to reduce the frequency
of the membership information gossiping (every k-th round only, £ > 1). It
has however turned out that this leads to the opposite effect: latency increases
(and thus reliability decreases) further. In contrast, when the frequency for
membership gossiping is increased (gossiping membership information more
often than events), the views appear to come closer to ideal views, and the
performance of our algorithm improves. This is however difficult to apply as
an optimization, since T is usually already chosen to be very small to ensure a
high throughput.

The precise analysis of the view distribution based on Markov chains seems
intractable. However, under the assumption that! « |subs|,, F, the distribution

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 369

can be safely approximated as independently uniform. In making our as-
sumptions, we basically rely upon the results of simulations held for different
schemes of the initial view distribution. In particular, we considered a scheme
in which one process is known initially to all (“star” topology) and a scheme in
which each process is initially known to just two neighbors (“ring” topology).
In both cases, the system eventually converges to the “uniform independent”
scheme. Defining the exact relationship between the parameters of the algo-
rithm that guarantees that, eventually, the view distribution can be regarded
as uniform is an interesting research question.

8.2 Combining Ipbcast Membership with pbcast

In this section we explore how some of the features of [pbcast can be combined
with such similar algorithms as pbcast.

Aside from the memory management schemes (for membership and mes-
sages), the main difference between our Ipbcast algorithm and pbcast [Birman
et al. 1999] is that our approach melts the two phases of pbcast (dissemina-
tion of events and exchange of digests) into a single phase. We comment here
on the integration of our membership approach with pbcast, and compare the
resulting algorithm with our /pbcast algorithm.

Membership layer. We have presented our membership approach as an in-
tegral part of our [pbcast algorithm to ease presentation. As we mentioned ear-
lier, our membership approach could be encapsulated as a membership layer,
on top of many probabilistic broadcast algorithms, like pbcast. The layer would
act by adding membership information to gossip messages, and would provide
quasi-independent uniformly distributed views. Since probabilistic broadcast
algorithms require a random subset of the system, theoretically the size of the
view does not impact the probability of infection. Hence throughput and deliv-
ery latency of the broadcast algorithm would remain virtually unaffected.

Evaluation. We simulated the behaviour of a pbcast version instrumented
with our membership approach. Figure 17(a) illustrates the process of event
propagation with a partial view membership for pbcast and Ipbcast, comparing
it with the case of the original pbcast based on a complete view.

Figure 17(b) presents the reliability degree measured with different values
for! (in every round, each of n = 125 processes published 40 events). The results
are similar to the ones obtained with Ipbcast (Figure 6). A direct comparison
of the two algorithms is however not a useful measure, since there are differ-
ent parameters involved. In fact, because repetitions and hops are limited in
the case of pbcast, a higher fanout is required to obtain similar results than
with Ipbcast (F = 5 here vs F' = 3 in Figure 6). In fact, I[pbcast reaches a
higher reliability degree when simulated in the same setting, since its latency
is smaller.

In practice, and at a high load of the system however, performance can be
expected to drop faster with Ipbcast, since the first phase of (complete) pbcast
ensures a high throughput, while gossip messages in Ipbcast will transport a
large number of event notifications, which might become a bottleneck.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

370 . P. Th. Eugster et al.

Ipbcast: nl=125, 1=15, FI=5
140 | pbcast with partial view: n=125, 1=15, F=5 ---
pbcast with total view: n=125, F=5 -

processes

rounds

(a) Comparison: number of infected processes in a given round.

T T T
Rate= 40msg/round; Notification list size= 60; Fanout=5
098 1

0.96 A
0.94 - b

0.92 - b

Reliability
(=]
<)

0.88

0.86

0.82 b

0.8 1 1 |
15 20 25 30 35

View size

(b) Delivery reliability of pbcast with a random partial view.

Fig. 17. Simulations and measurements with pbcast.

The age-based message purging scheme, which was discussed in Section 6,
is also applicable to pbcast. The two versions of pbcast with random message
purging (using the original algorithm of pbcast), and age-based message
purging, were used to show this. The simulation results of these two versions
are depicted in Figure 18(a) and Figure 18(b). The age-based message purging
performance of the pbcast algorithm is clearly higher.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 371

1.2 T T T T

Age-blased purginlg
Random purging --------

11| 1

delivery ratio

0.5 1 I | 1 1 |
200 300 400 500 600 700 800

round

(a) Delivery ratio of pbcast with random purging and age-based purging.

80 : . , . |

Age-based purging ——
Random purging ----—--—

70 | |

Throughput for 90% stability

20 25 30 35 40 45 50
Buffer size

(b) Throughput of pbcast with random purging and age-based purging
(message stability level 90%).

Fig. 18. Performance improvement of pbcast by age-based message purging.
The optimization techniques presented in Sections 6 and 7 improve the
algorithm without compromising scalability or reliability. These optimization

techniques do not reduce the number of messages gossiped. In gossip-based
algorithms, messages are gossiped more than once: while some messages

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

372 . P. Th. Eugster et al.

are gossiped many times, others are gossiped comparatively less. That is,
there is a high variance. Our approach reduces this variance to maximise
the utilization of memory for message storage as well as the bandwidth for
message transportation. These optimization techniques can also be applied
together with other gossip-based approaches such as the schemes described
in Rodrigues et al. [2003].

In WANs. Lpbcast is an application level broadcast scheme that does not
depend on network level functions and can be easily deployed in WANSs. In other
terms, it can perform broadcasting in a true peer-to-peer model. In fact because
of the highly scalable membership scheme it is better suited to environments
like WANs with a huge number of participants.

Lpbcast does not however recognize the “locality” in the network, for example
when retrieving missed messages or gossiping, but can be combined with other
schemes such as those in Xiao et al. [2002] and Xiao and Birman [2001], which
exploit the “locality”.

A couple of algorithms were introduced to reduce the memory requirement
for buffers [Xiao et al. 2002; Xiao and Birman 2001]. These are especially useful
in WANSs and arrange receivers into a hierarchical structure of regions. They
are built on top of Birman et al. [1999], which is similar to I[pbcast. As a result
these algorithms [Xiao et al. 2002; Xiao and Birman 2001] can make better use
of the advantages provided by Ipbcast in terms of membership management
and message purging than Birman et al. [1999].

9. CONCLUDING REMARKS

Probabilistic broadcast algorithms have become very attractive for large scale
information dissemination because of their nice combination of scalability and
reliability. They seem to constitute ideal candidates to support emerging peer-
to-peer applications. Though the reliability guarantees they offer are weaker
than traditional ones ([Hadzilacos and Toueg 1993]), their degree of reliability is
satisfactory in a practical context. In return, probabilistic broadcast algorithms
excel in terms of scalability. Probabilistic broadcast algorithms are scalable
because each process sends only a fixed number of messages; they achieve fault-
tolerance because a process receives copies of a message from several processes.
However, as we pointed out, the problem of memory management has been
neglected, in particular membership management and message purging issues.

This paper addresses precisely the problem of scalable memory manage-
ment in a probabilistic broadcast algorithm. We present an algorithm called
Ipbcast that is completely decentralized. In our algorithm the membership is
handled in a probabilistic manner: a process only knows a fixed number of
processes obtained randomly, and fault-tolerance can be preserved if each pro-
cess is known by several processes. This idea is intuitively supported by the fact
that gossip messages are only sent to a fixed number of processes. Besides the
scalability properties of our Ipbcast algorithm, we have shown that, in prac-
tice, there is very little dependency between its reliability and the size of the
views, and this view size can be very small compared to the total size of the
system.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

Lightweight Probabilistic Broadcast . 373

Purging messages from buffers is also an important issue in probabilistic
broadcast. Messages that have been disseminated “enough” in the system (i.e.,
stable messages) should be removed from the buffers while keeping the others.
Due to the decentralized nature of the system, it is non trivial to detect the
stability of the messages. In this paper we also presented some optimization
techniques that improve the message purging. A similar optimization is also
shown that further improves the membership management.

ACKNOWLEDGMENTS

We are very grateful to Ken Birman and Robert van Renesse for affording us
an insight into probabilistic reliable broadcast. We would also like to thank the
reviewers for their helpful comments on an earlier revision of this manuscript.

REFERENCES

AGUILERA, M., STrROM, R., STURMAN, D., AsTLEY, M., AND CHANDRA, T. 1999. Matching events in a
content-based subscription system. In Proceedings of the 18th ACM Symposium on Principles of
Distributed Computing (PODC °99).

Baney, N. 1975. The Mathematical Theory of Infectious Diseases and its Applications (second
edition). Hafner Press.

Bmrman, K., Havypen, M., Ozrasap, O., X1a0, Z., Bupiu, M., AND MINsky, Y. 1999. Bimodal multicast.
ACM Trans. Comput. Syst. 17, 2 (May), 41-88.

CARZANIGA, A., RosENBLUM, D., AND WoLF, A. 2000. Achieving scalability and expressiveness in an
internet-scale event notification service. In Proceedings of the 19th ACM Symposium on Principles
of Distributed Computing (PODC 2000). 219-227.

DEERING, S. 1994. Internet multicasting. In ARPA HPCC 94 Symposium. Advanced Research
Projects Agency Computing Systems Technology Office.

DEMERS, A., GREENE, D., HAauskgr, C., IrisH, W., LARSON, dJ., SHENKER, S., STURGIS, H., SWINEHART, D.,
AND TErry, D. 1987. Epidemic algorithms for replicated database maintenance. In Proceed-
ings of the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC’87). 1-
12.

Eucster, P. T., FELBER, P., GUERRAOUI, R., AND KERMARREC, A.-M. 200la. The many faces of
publish/subscribe. Tech. Rep. DSC/2001/004, Swiss Federal Institute of Technology, Lausanne,
http://dscwww.epfl.ch/EN/publications/.

Euaster, P. T., GuErraour, R., AND SVENTEK, J. 2000. Distributed Asynchronous Collections: Ab-
stractions for publish/subscribe interaction. In Proceedings of the 14th European Conference on
Object-Oriented Programming (ECOOP 2000). 252-276.

EuGsTER, P. T., GuERRAOUI, R., HANDURUKANDE, S. B., KERMARREC, A.-M., aAND KouzneTsov, P. 2001b.
Lightweight probabilistic broadcast. In Proceedings of the IEEE International Conference on
Dependable Systems and Networks (DSN 2001).

Euaster, P. T., Guerraoul, R., KERMARREC, A.-M., anD Massourig, L. 2003. From epidemics to
distributed computing. IEEE Comput.

GoLDING, R. 1992. Weak consistency group communication for wide-area systems. In Proceedings
of the Second Workshop on the Management of Replicated Data.

Hapziacos, V. anp Toukg, S. 1993. Distributed Systems, 2nd ed. Addison-Wesley, Chapter 5:
Fault-Tolerant Broadcasts and Related Problems, 97-145.

KeRMARREC, A.-M., MassouLig, L., AND GanesH, A. 2003. Probabilistic reliable dissemination in
large-scale systems. IEEE Trans. Parallel Distrib. Syst. 14, 3 (March).

Kouznetsov, P., Guerraout, R., HANDURUKANDE, S. B., AND KERMARREC, A.-M. 2001. Reducing noise
in gossip-based reliable broadcast. In Proceedings of the IEEE Symposium on Reliable Distributed
Systems (SRDS 2001).

LiN, M.-J. AND MarzuLLO, K. 1999. Directional gossip: Gossip in a wide area network. In European
Dependable Computing Conference (EDCC). 364-379.

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

374 . P. Th. Eugster et al.

LN, M.-J., MarzuLLo, K., AND Masint, S. 2000. Gossip versus deterministically constrained flood-
ing on small networks. In Proceedings of the International Conference on Distributed Computing
(DISC 2000). 253-2617.

ORLANDO, J., RODRIGUES, L., AND OLIVEIRA, R. 2000. Semantically reliable multicast protocols. In
Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS 2000).

Paur, S., Sanant, K., LiN, J., AND BHATTACHARYYA, S. 1997. Reliable multicast transport protocol
(RMTP). IEEE J. Selected Areas Comm. 15, 3 (Apr.), 407-421.

PianTont, R. aND Stancescy, C. 1997. Implementing the Swiss exchange trading system. In Pro-
ceedings of The Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing
(FTCS °97). 309-313.

RopricuEs, L., HANDURUKANDE, S., PEREIRA, J., GUERRAOUL, R., AND KERMARREC, A.-M. 2003. Adap-
tive gossip-based broadcast. In Proceedings of the IEEE International Conference on Dependable
Systems and Networks (DSN 2003).

SuN, Q. AND STURMAN, D. 2000. A gossip-based reliable multicast for large-scale high-throughput
applications. In Proceedings of the IEEE International Conference on Dependable Systems and
Networks (DSN2000). New York, USA.

TIBCO. 1999. TIB/Rendezvous White Paper. http://www.rv.tibco.com/.

VAN RENESSE, R. 2000. Scalable and secure resource location. In Proceedings of the IEEE Hawaii
International Conference on System Sciences.

Xi1a0, Z. anp BirmaN, K. 2001. Randomized error recovery algorithm for reliable multicast. In
Proceedings of the IEEE Conference on Computer Communications (INFOCOM).

X140, Z., BirmaAN, K., AND vaAN RENESSE, R. 2002. Optimizing buffer management for reliable multi-
cast. In Proceedings of the IEEE International Conference on Dependable Systems and Networks
(DSN2002).

Received August 2001; revised January 2003; accepted February 2003

ACM Transactions on Computer Systems, Vol. 21, No. 4, November 2003.

