
RELOGO GETTING STARTED GUIDE

JONATHAN OZIK - REPAST DEVELOPMENT TEAM

0. Before we Get Started

Before we can do anything with Repast Simphony, we need to make sure that we have a
proper installation of the latest version. Instructions on downloading and installing Repast
Simphony on various platforms can be found on the Repast website.1 Repast Simphony
requires Java 8 to be installed. Java can be found at the Java Standard Edition Downloads
Page.2

1. Getting Started with ReLogo

Now let us begin our exploration of ReLogo. We will be building a simple agent-based
model involving zombies chasing humans and humans running away from zombies3. Our
approach will be to not overwhelm you but to explain only as much as is needed at each
step. By the end of this chapter, we’ll have covered a lot of ground and you’ll be able to
continue with your own explorations of ReLogo4.

The first thing we must do is create a new ReLogo project. This is done by clicking on
the New ReLogo Project icon in the toolbar (Fig. 1) at the top of our ReLogo workspace.

Figure 1. The New ReLogo Project icon.

Date: October 23, 2017.
1 https://repast.github.io/download.html
2 http://www.oracle.com/technetwork/java/javase/downloads/index.html
3 A completed version, Zombies Demo model, is available as part of the demonstration models that

come with the Repast Simphony distribution. Import any of the demonstration models via the File menu
and selecting “Import Repast Examples”.

4 For further reading see Ozik, J., N. Collier, J. Murphy, and M.J. North. “The ReLogo Agent-based
Modeling Language.” In WSC 2013 Proceedings. Washington, D.C., December 2013.

1

https://repast.github.io/download.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://repast.github.io/download.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

This brings up the New ReLogo Project Wizard (Fig. 2) which gives us the ability
to name our project (and a few more options which we’ll ignore for now). Typing in
“Zombies” in the “Project name” field5, we press the “Finish” button and the wizard sets
up our project. The project structure should look like Fig. 3 (but if it does not, see this
note6).

Figure 2. The New ReLogo Project Wizard.

5ReLogo differentiates between capitalized and uncapitalized letters (i.e., it is case sensitive) so, when
following this tutorial, it will be important to note the capitalization of names, variables, etc.

6Here we assume that your ReLogo Resource Filter is enabled. If the ReLogo Resource Filter is disabled,
you may see more elements in your Zombies project. See Section 2.4 on how to disable/enable this filter.

RELOGO GETTING STARTED GUIDE 3

Figure 3. The directory structure of the newly created Zombies project.

What we see is the Zombies project folder, the “src” subfolder, the “zombies.relogo”
package, and the relevant ReLogo files, in addition to a “shapes” folder7. More on each of
these things as we proceed.

1.1. Creating the Human and Zombie turtle types. Now that we have all our model
infrastructure in place, we can start specifying the details of our Zombie model. First, since
zombies love to chase humans, we create the Human turtle8 type9. We do this by selecting
the “zombies.relogo” package, if it isn’t selected, and then clicking on the New Turtle icon
(Fig. 4) in the toolbar10. This brings up the New Turtle Wizard (Fig. 5) which allows us to
specify the name of our turtle type (Human). If we initially selected the “zombies.relogo”
package, we simply fill in the Name field with “Human” and hit the Finish button11. At
this point we should be greeted by our newly created Human turtle type as seen in Fig. 612

7You may also see an “output” folder which has to do with parameter sweeps and is not within the
scope of this guide. See the Repast Batch Getting Started Guide for more information.

8In Logo dialects a “turtle” is a mobile agent.
9Many of the ReLogo entities we’ll encounter, including turtle types, are what are known in Object

Oriented programming languages as classes.
10Selecting the “zombies.relogo” package simplifies the next step.
11If the “zombies.relogo” package hadn’t been selected, we need to fill in the Package field with “zom-

bies.relogo” before hitting the Finish button.
12For those curious about the .groovy file ending, ReLogo is an agent-based modeling domain specific

language (ABM DSL), written in the Groovy programming language. While it isn’t necessary to be able
to follow this getting started guide, we recommend getting to know the language through the Groovy
website (http://www.groovy-lang.org) and the many Groovy books which are available. There is also a

http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org

4 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 4. The New Turtle icon.

Figure 5. The New Turtle Wizard with information for creating the Hu-
man turtle type.

Next we follow a similar procedure to create the Zombie turtle type (Fig. 7).

very convenient web based console (http://groovyconsole.appspot.com/) where you can experiment with
the Groovy language.

http://groovyconsole.appspot.com/

RELOGO GETTING STARTED GUIDE 5

Figure 6. The view after creation of the Human turtle type.

Figure 7. The New Turtle Wizard with information for creating the Zom-
bie turtle type.

6 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

1.2. Defining Human and Zombie behaviors. The next step in building our model is
defining the behaviors of the Human and Zombie turtle types. We’ll dive right in.

Each Human will have a step method which looks like this (but first, see important
note13):

1 def step (){

2 def winner = minOneOf(neighbors ()){

3 count(zombiesOn(it))

4 }

5 face(winner)

6 forward (1.5)

7 if (infected){

8 infectionTime ++

9 if (infectionTime >= 5){

10 hatchZombies (1){

11 size = 2

12 }

13 die()

14 }

15 }

16 }

Listing 1. Human step method.

The thinking here is that at every time advancement of our simulation, or “tick,” each
Human will execute this method. The Human first chooses a winner which is, in plain
English, one of the neighboring patches14 with the fewest number of Zombies on it. When
the winner is chosen, the Human faces it and moves forward 1.5 steps, thereby running
away from potential high Zombie areas. If the Human is infected, and 5 or more time ticks
have passed since the initial infection, the Human dies and hatches a Zombie.

Let’s briefly review the code. A ReLogo turtle has a number of ReLogo primitives15,
or capabilities, it can use, without having to create its own. Among these are minOneOf
and neighbors. minOneOf takes as an argument a set of “things” and a block defining

13For those following this getting started guide electronically, simple copying-and-pasting of the code
from the tutorial will result in errors. Even if the line numbers are removed there can be errors resulting
from the formatting of quoted strings and other elements. In short, to get the most out of the guide with
the least amount of errors, we recommend typing in the code yourself.

14Patches were introduced by StarLogo and are square shaped immobile agents which make up an
underlying grid structure in a ReLogo world.

15The set of available primitives can be found in the ReLogoPrimitives.html file that came with the
Repast Simphony distribution. The primitives are separated broadly by the type of ReLogo entity that
uses them and further by the type of primitive category (e.g, motion, rotation, etc.). Clicking on a primitive
will give you more details. In addition to the information available within the ReLogo editor itself (see
Fig. 8), this will be an additional reference as you explore ReLogo so it will help to get familiar with it.

http://education.mit.edu/starlogo/

RELOGO GETTING STARTED GUIDE 7

Figure 8. Hovering over any element in the editor will reveal an informa-
tional pane. In this case the information related to the minOneOf primitive
is shown.

what quantity will be used to determine the minimum of. Hovering over the minOneOf
primitive reveals an information pane describing it (Fig. 8).

The “things” (in line 2 of Listing 1) are the set of patches returned by the neighbors
primitive, which are the 8 neighbors16 of the patch that the Human is on. You’ll notice
that neighbors is followed by a set of empty parentheses. This is because the primitives
are what are referred to in some programming circles as methods and the parentheses hold
the arguments to those methods. If the method doesn’t take any arguments, as is the case
with the neighbors primitive, we still need to call the method but without any arguments.
As mentioned above, minOneOf takes two arguments, the second being a block of code,
specified between curly braces. Groovy allows, for clarity, to omit the parentheses around
a block of code if it’s the last argument to a method. So instead of writing:

minOneOf(neighbors () , {

count(zombiesOn(it))

})

we can write:

minOneOf(neighbors ()){

count(zombiesOn(it))

}

The block of code is executed in the context of the first argument to minOneOf, in this
case the 8 neighboring patches.

16This is referred to as the Moore neighborhood in a grid.

8 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

When you define a turtle type in ReLogo, there are primitives that are automatically
made available to various ReLogo entities17. zombiesOn is such a primitive that was made
available to patches when we defined the Zombie turtle type. It takes as an argument a
patch18 and returns the Zombie turtles on that patch. The it is another feature of Groovy.
It is an implicit argument to the block of code19 which allows us to simplify:

minOneOf(neighbors ()){ p ->

count(zombiesOn(p))

}

to:

minOneOf(neighbors ()){

count(zombiesOn(it))

}

The primitive count can be applied to any set of items and returns the number of items
in the set. Finally, the def keyword in Groovy is used when we define variables or the
return types of methods. It’s basically a wildcard indicating that whatever it adorns is
of “some” type, without specifying further20. Thus, taken together, lines 2-4 of Listing 1,
assign to the variable winner the patch with the fewest number of Zombies on it21.

We’ll assume that lines 5 and 6 of Listing 1 are self explanatory, and proceed to the con-
ditional statement on lines 7-13. The if keyword is commonly used in many programming
languages to determine the logical flow of some statements. In this case, we are checking to
see if the Human is infected and if so, we proceed to line 8 and otherwise we skip down past
line 13, the end of the if block. This is a good time to introduce the fact that in addition
to methods, ReLogo entities have properties as well. Thus, elsewhere (which we’ll show in
Listing 2), we’ve explicitly specified that the Human turtle type has an infected property
which we will initially set to false. The same holds for the infectionTime property22, on
line 8, which we’ll initially set to 0, again elsewhere (Listing 2).

17For a complete list, see Table 1 in Appendix A.
18zombiesOn can also take a turtle as an argument, which has the same semantics as the version that

takes a patch as an argument, but in the former case the patch is the patch under the turtle.
19Arguments passed to a block of code are a comma separated sequence of variable names followed by

->. For any block of code without input arguments explicitly specified, the assumption is that it takes one
implicit parameter named it.

20Groovy, for those interested, uses dynamic (but strict) typing. This is just one of the reasons why we
often refer to it as a “less neurotic” Java.

21One of the most common mistakes is replacing the equality operator == with the assignment operator
=. In the former case, the equality of the two sides is checked and either a true or false is returned. In the
latter case, the right hand side is assigned to the left hand side.

22The infectionTime++ notation is a shortcut for infectionTime = infectionTime + 1.

RELOGO GETTING STARTED GUIDE 9

On lines 9-12, we check to see if the infectionTime is greater than or equal to 5 and, if
so, the Human hatches a Zombie and then it dies23.

Now let’s see what our full Human turtle type looks like, with the step method and the
turtle properties:

1 // package declaration and imports , which we can ignore for now

2

3 class Human extends ReLogoTurtle {

4

5 def infected = false

6 def infectionTime = 0

7

8 def step (){

9 def winner = minOneOf(neighbors ()){

10 count(zombiesOn(it))

11 }

12 face(winner)

13 forward (1.5)

14

15 if (infected){

16 infectionTime ++

17 if (infectionTime >= 5){

18 hatchZombies (1){

19 size = 2

20 }

21 die()

22 }

23 }

24 }

25

26 }

Listing 2. The Human turtle type.

The takeaway here is that turtle type properties and methods are defined within the
class body of the turtle type, in this case between the curly braces on lines 3 and 26.

Now let’s move on to the Zombie turtle type. It looks like this:

23The order might be confusing but if the Human dies and is removed from the simulation before hatching
the Zombie, well, it can’t hatch the Zombie!

10 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

1 // package declaration and imports , which we can ignore for now

2

3 class Zombie extends ReLogoTurtle {

4

5 def step (){

6 def winner = maxOneOf(neighbors ()){

7 count(humansOn(it))

8 }

9

10 face(winner)

11 forward (0.5)

12

13 if (count(humansHere ()) > 0){

14 label = "Brains!"

15 infect(oneOf(humansHere ()))

16 }

17 else {

18 label = ""

19 }

20 }

21

22 def infect(Human human){

23 human.infected = true

24 }

25 }

Listing 3. The Zombie turtle type.

What should be noticed here is that, in addition to the method step, we’ve defined
another auxiliary method infect which takes one argument of type Human, named human24.
Let us take a moment to explore how it’s used. Looking at lines 13-15 in Listing 3, we
see that we check using the primitives count and humansHere25 if there are any Human
turtle types “here.” If there are, we define the default turtle type property label to be

24We did not have to specify the type of the argument. That is, we could have written def infect(human)
instead of def infect(Human human), but in specifying the variable type we are allowing the system to know
that the human variable is of type Human and therefore has an infected property. Had we opted not to
specify the type, the system would have underlined the infected property to warn us that it may or may
not exist.

25As you probably guessed, this is one of the generated primitives when we defined the Human turtle
type.

RELOGO GETTING STARTED GUIDE 11

Figure 9. The UserObserver.groovy file in the Package Explorer view.

“Brains!” and proceed to infect oneOf the humansHere26. To infect the human, we access
the human’s property infected by referencing it with a period27.

1.3. Coordinating behaviors with the UserObserver. At this point we have both
the Human and Zombie turtle types specified. What we need next is to define the overall
flow of our model. Logo uses the notion of an “observer” to accomplish this role. The
UserObserver is the default observer type that was made for us when we created the
Zombies project. Double clicking the UserObserver.groovy file in the Package Explorer
view (Fig. 9) will bring up the file28.

A common idiom is to define a method that sets up our simulation. We do so by defining
the setup method:

26As you likely notice, the purpose of Logo constructs in general and ReLogo code in particular can
often easily be understood and can lead to more manageable code.

27In Object Oriented languages, accessing an object’s properties and methods is a common idiom.
28When the UserObserver.groovy file is revealed in the editor it will include commented sections of code.

Comments in ReLogo and Groovy (and Java) are specified by // for single line comments and /*comment

content*/ for multiline comments. All the contents of comments are ignored in terms of program logic but
they are helpful (and many say indispensable) for creating readable and manageable code. You may leave
the comments in or delete them.

12 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

1 @Setup

2 def setup (){

3 clearAll ()

4 setDefaultShape(Human , "person")

5 createHumans(numHumans){

6 setxy(randomXcor (), randomYcor ())

7 }

8 setDefaultShape(Zombie , "zombie")

9 createZombies(numZombies){

10 setxy(randomXcor (), randomYcor ())

11 size = 2

12 }

13 }

Listing 4. The UserObserver setup method.

We’ll first describe, in plain English, what this piece of code does. It is a good idea in
any initialization code to reset the simulation, so we first clearAll existing entities from
the world. Then we define the default shapes of both the Humans and Zombies and create
a different number of each (with primitives generated by defining the Human and Zombie
turtle types). We also scatter the created turtles randomly across our world and set the
size of the Zombies to 2, to make them more prominent.

Now that we know the gist of Listing 4, let’s delve a little deeper. Our method is
annotated with the @Setup annotation. This indicates to the system that this method
should be run when the system schedule starts up29. The clearAll primitive removes all
existing entities from the ReLogo world and resets the patches to their default state. The
setDefaultShape primitive takes two arguments. The first argument is a turtle type and
the second is a string30 specifying a turtle shape. To understand what shapes are available
we can open the “shapes” folder in the Package Explorer view (Fig. 10) and see the default
shapes that come with any newly created ReLogo project31. Simply specifying the name
of one of these shapes (without the .svg suffix) in the setDefaultShape primitive’s second
argument will set the chosen turtle type’s default shape to it32.

Another thing that the astute reader might notice is that there are references to numHu-
mans and numZombies. While it’s possible for these to be properties of the UserObserver

29More specifically, this schedules the setup method to run at simulation tick 0. Naming our method
setup was done for clarity but it could have been named anything. The important point is that @Setup

annotates the method we’d like to use for our model setup.
30A string is a set of characters enclosed in quotes.
31In Appendix C we’ll see that you can import a variety of shape types and even create your own.
32This just sets the default shape of the turtle type. Shapes can be subsequently changed during the

simulation as well with the shape = “shapeName” construct.

RELOGO GETTING STARTED GUIDE 13

Figure 10. The shapes folder in the Package Explorer view.

class, we will opt to make these “tweakable” as the simulation progresses via slider graph-
ical elements33. More on this in a bit. The ReLogo editor has autocompletion capabilities.
Starting to type createHu (on Line 5 in Listing 4) and pressing Control Space will reveal
suggested completions (Fig. 11). The information in the revealed pane indicates that the
createHumans method (and the createZombies method) takes an optional block of code
as a second argument where the created turtles can be initialized immediately after being
created. The contents of the code block are understood to be in the context of the relevant
entities (Human or Zombie turtles) so it is unnecessary to specify that it’s the turtle setxy

method that we are calling. Invoking the code completion within the code blocks illustrates
this (Fig. 12).

The next thing for us to do is to define the simulation step. That is, to coordinate
what happens with the Zombie and Human turtles as time advances. We do this in our go
method.

33Since these variables are not yet defined, you’ll see them underlined in the editor.

14 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 11. Autocompletion in the ReLogo editor. Pressing Control Space
will reveal suggestions for completions.

Figure 12. Autocompletion within the createHumans optional code block.
The editor understands that the contents of the code block are in the con-
text of turtles (as opposed to just the observer context) by the suggestions
setXcor and setxy.

1 @Go

2 def go(){

3 ask (zombies ()){

4 step()

5 }

6 ask (humans ()){

7 step()

8 }

9 }

Listing 5. The UserObserver go method.

As we see, we’ve already done most of the hard work of specifying the agents’ behaviors.

RELOGO GETTING STARTED GUIDE 15

The @Go annotation tells the system to run the go method starting at time 1 (in units of
simulation ticks), repeating every subsequent tick34. What the observer does is ask the
Zombie and Human turtle types to execute their step. This is achieved with the Logo
idiom ask. A ReLogo entity (observer, turtle, patch, etc.) can ask another entity or set of
entities to do things by specifying the request in a block of code after the ask primitive35.
In this case, the zombies and humans primitives36 return the set of all Zombie and Human
turtle types respectively. The context of the code block passed to ask is that of the asked
entities.

Collecting what we’ve covered so far in the observer code, the UserObserver class should
look like this:

34Here, once again, we could have named the method something other than go.
35The block of code is the second argument to the ask primitive.
36Some more examples of automatically generated primitives.

16 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

1 // package declaration and imports , which we can ignore for now

2

3 class UserObserver extends ReLogoObserver{

4

5 /**

6 * Some comments here.

7 */

8 @Setup

9 def setup (){

10 clearAll ()

11 setDefaultShape(Human , "person")

12 createHumans(numHumans){

13 setxy(randomXcor (), randomYcor ())

14 }

15 setDefaultShape(Zombie , "zombie")

16 createZombies(numZombies){

17 setxy(randomXcor (), randomYcor ())

18 size = 2

19 }

20

21 }

22

23 @Go

24 def go(){

25 ask (zombies ()){

26 step()

27 }

28 ask (humans ()){

29 step()

30 }

31 }

32

33 }

Listing 6. The UserObserver class.

1.4. Creating the graphical control and display elements. We’ve specified the agent
(turtle) behaviors and the overall flow of our Zombies model. Here we add some controls
via graphical elements. The relevant file is UserGlobalsAndPanelFactory.groovy (Fig. 13).

Opening this file we immediately notice some, hopefully helpful, comments on what types
of elements are available. For a complete list, see Appendix B. We create slider elements,

RELOGO GETTING STARTED GUIDE 17

Figure 13. The UserGlobalsAndPanelFactory.groovy file in the Package
Explorer view.

with labels, for the numHumans and numZombies variables referenced in UserObserver
(Listing 6)37. Sliders allow one to vary the value of a variable by dragging.

addSliderWL("numHumans", "Number of Humans", 1, 1, 100, 50)

addSliderWL("numZombies", "Number of Zombies", 1, 1, 10, 5)

Let’s anticipate that we’d like to know, at any given time, the number of remaining
Humans. We employ a monitor for this.

addMonitorWL("remainingHumans", "Remaining Humans", 5)

A monitor takes as its first argument the name (as a string) of a method in our UserOb-
server, which we’ll have to create below. The second argument is the label of the monitor
and the third argument specifies how often we’ll be updating the monitor, in this case
every 5 time ticks.

37A trailing WL, i.e. “with label”, is added to the graphical element methods to signify that the method
takes a label as an argument. Otherwise the name of the relevant object (in the case of a slider, the variable
referred to by the slider) will be displayed.

18 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Our UserGlobalsAndPanelFactory should look like38:

1 // package declaration and imports , which we can ignore for now

2

3 public class UserGlobalsAndPanelFactory

4 extends AbstractReLogoGlobalsAndPanelFactory{

5

6 public void addGlobalsAndPanelComponents (){

7

8 /**

9 * Example comments

10 */

11

12 addSliderWL("numHumans", "Number of Humans", 1, 1, 100, 50)

13 addSliderWL("numZombies", "Number of Zombies", 1, 1, 10, 5)

14 addMonitorWL("remainingHumans", "Remaining Humans", 5)

15 }

16

17 }

Listing 7. The UserGlobalsAndPanelFactory class.

The remainingHumans method to be added to the UserObserver class is as follows 39:

1 def remainingHumans (){

2 count(humans ())

3 }

Listing 8. The remainingHumans method in UserObserver.

The UserObserver with the additional remainingHumans method should now look like
this:

38Note that all the graphical elements are specified within the curly braces after addGlobalsAndPanel-
Components(), in this case on lines 7 - 14.

39As a note, in Groovy the use of the return keyword to return a value from a method is optional when the
returned value is given by the last statement in the method. This is because the value of the last statement
in a method is automatically returned to the method’s caller. Thus we can write count(humans()) instead
of return count(humans()) in Listing 8.

RELOGO GETTING STARTED GUIDE 19

1 // package declaration and imports , which we can ignore for now

2

3 class UserObserver extends ReLogoObserver{

4

5 /**

6 * Some comments here.

7 */

8 @Setup

9 def setup (){

10 clearAll ()

11 setDefaultShape(Human , "person")

12 createHumans(numHumans){

13 setxy(randomXcor (), randomYcor ())

14 }

15 setDefaultShape(Zombie , "zombie")

16 createZombies(numZombies){

17 setxy(randomXcor (), randomYcor ())

18 size = 2

19 }

20

21 }

22

23 @Go

24 def go(){

25 ask (zombies ()){

26 step()

27 }

28 ask (humans ()){

29 step()

30 }

31 }

32

33 def remainingHumans (){

34 count(humans ())

35 }

36

37

38 }

Listing 9. The UserObserver class.

20 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 14. The downward triangle to reveal the Run options pull down menu.

1.5. Running the Zombies model. Our next step is to see what happens when we
actually run the Zombies model that we’ve built so far. We do this by clicking on the small
downward triangle to the right of the green “play” button in the toolbar at the top of the
ReLogo workspace (Fig. 14). This reveals a pull down menu and we select the “Zombies
Model” choice (Fig. 15).

This launches the Repast Simphony runtime (Fig. 16). The next step is to press the
Initialize button to initialize the runtime (Fig. 17) which loads our Zombie model (Fig. 18).

The User Panel on the left reveals the graphical elements that we created (Fig. 19).
Pressing the Step button at the top of the runtime (Fig. 20) will advance the simulation
schedule to time tick 0 and will, therefore, run the setup method we scheduled with the
@Setup annotation in the UserObserver (Listing 9). This should result in Figure 21.

RELOGO GETTING STARTED GUIDE 21

Figure 15. The “Zombies Model” entry which launches the Zombies model.

Figure 16. The Repast Simphony runtime.

At this point we can choose to repeatedly press the Step button and observe how the
model evolves (Fig. 22) or, alternatively, we can press the Play button (Fig. 23) which will
run the simulation until we Pause (Fig. 24) or Stop (Fig. 25) it. Whenever we want to
reset the model, we simply press the Reset (Fig. 26) button. If, as we do next, we want

22 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 17. The Initialize button in the Repast Simphony runtime.

Figure 18. The loaded Zombie model.

RELOGO GETTING STARTED GUIDE 23

Figure 19. The graphical elements in the User Panel.

to modify or add to the model’s code, we must close the Repast Simphony runtime and,
after the modifications to the model are complete, relaunch it.

24 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 20. The Step button in the Repast Simphony runtime.

RELOGO GETTING STARTED GUIDE 25

Figure 21. The Zombies model after pressing the Step button.

26 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 22. A closeup of the Zombies model.

RELOGO GETTING STARTED GUIDE 27

Figure 23. The Play button in the Repast Simphony runtime.

Figure 24. The Pause button in the Repast Simphony runtime.

Figure 25. The Stop button in the Repast Simphony runtime.

28 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 26. The Reset button in the Repast Simphony runtime.

RELOGO GETTING STARTED GUIDE 29

Figure 27. The New Link icon.

1.6. Adding links to the Zombies model. In this section we’ll add to the Zombies
model by introducing links40. We’ll create Infection link types and use them to track which
Human agents have been infected by which Zombie agent. We do this, in a similar manner
to how we created our Human and Zombie turtle types, by selecting the “zombies.relogo”
package and then clicking on the New Link icon (Fig. 27) in the toolbar. This brings up
the New Link Wizard which allows us to specify the name of our link type. We fill in the
Name field with “Infection” and press the Finish button.

We slightly modify the Zombie step method to look like:

40Links were introduced to Logo by NetLogo. They are edges of networks where the vertices are the
turtles.

http://ccl.northwestern.edu/netlogo/

30 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

1 def step (){

2 def winner = maxOneOf(neighbors ()){

3 count(humansOn(it))

4 }

5 face(winner)

6 forward (0.5)

7 if (count(humansHere ()) > 0){

8 label = "Brains!"

9 def infectee = oneOf(humansHere ())

10 infect(infectee)

11 createInfectionTo(infectee)

12 }

13 else {

14 label = ""

15 }

16 }

Listing 10. New Zombie step method with lines 9 - 11 modified from the
previous Zombie step (cf. line 15 in Listing 3).

We’ve made it so that if the Zombie finds a Human, they not only infect the Human but also
create an Infection link to it (lines 9 - 11 in Listing 10). When the infectee dies any links
it has are automatically removed so the newly hatched Zombie won’t retain those41. In
an analogous manner to how turtle type specific methods were generated when we defined
new turtle types, when we create new link types we gain access to a number of new link
specific methods. createInfectionTo is such a method. To see a full list of the methods
generated see Table 2 in Appendix A.

We’d also like to be able to play with the length of the gestation period, i.e., the period
it takes for a Human to die and become a Zombie, to be able to see a network of infections
forming before the infected Human dies. We add a gestationPeriod variable as a slider
(Listing 11) and modify the Human turtle type (Line 17 in Listing 12) to accomplish this.

41It is left to the interested reader to figure out how to make these Infection links persist. There are
many possible ways to accomplish this but one is to use the primitives inInfectionNeighbors and createIn-
fectionsFrom.

RELOGO GETTING STARTED GUIDE 31

1 // package declaration and imports , which we can ignore for now

2

3 public class UserGlobalsAndPanelFactory

4 extends AbstractReLogoGlobalsAndPanelFactory{

5

6 public void addGlobalsAndPanelComponents (){

7

8 /**

9 * Example comments

10 */

11

12 addSliderWL("numHumans", "Number of Humans", 1, 1, 100, 50)

13 addSliderWL("numZombies", "Number of Zombies", 1, 1, 10, 5)

14 addSliderWL("gestationPeriod", "Gestation", 5, 1, 30, 5)

15 addMonitorWL("remainingHumans", "Remaining Humans", 5)

16 }

17

18 }

Listing 11. The UserGlobalsAndPanelFactory class with a gestationPe-
riod variable as a slider.

32 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

1 // package declaration and imports , which we can ignore for now

2

3 class Human extends ReLogoTurtle {

4

5 def infected = false

6 def infectionTime = 0

7

8 def step (){

9 def winner = minOneOf(neighbors ()){

10 count(zombiesOn(it))

11 }

12 face(winner)

13 forward (1.5)

14

15 if (infected){

16 infectionTime ++

17 if (infectionTime >= gestationPeriod){

18 hatchZombies (1){

19 size = 2

20 }

21 die()

22 }

23 }

24 }

25

26 }

Listing 12. The Human turtle type modified to use a variable gestation period.

Now when we run our model, we can see larger networks of Infection links forming as
we increase the gestation period (Fig. 28).

RELOGO GETTING STARTED GUIDE 33

Figure 28. The Zombie model showing infection networks.

34 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 29. The Data Set label in the Scenario Tree panel.

1.7. Data Sets, Sinks and External Plugins. Now that we have the model running
with turtles, patches and links, we’ll explore the creation of simple data sets to create file
outputters and even to take advantage of the many plugins available which connect to
external tools. We launch the Zombies model, if it’s not already launched. Once it is up,
we go to the Scenario Tree panel underneath the User Panel and carry out the following
steps:

(1) Right click on the Data Sets label (Fig. 29) and choose Add DataSet.
(2) In the Data Set Editor, type Agent Counts as the Data Set ID, and Aggregate as

the Data Set type. Click Next.
(3) In the next few steps, we specify the data sources that make up our data set. The

Standard Sources tab allows us to add some standard data sources to our data set.
For this tutorial we keep the default settings (only the Tick Count box checked).

(4) Next, select the Method Data Sources tab. The Method Data Sources tab allows
us to create data sources that will call methods on agents in our model. Click on
the Add button to add a row. Type in “Remaining Humans” for the Source Name,
select Human for the Agent Type and Count for the Aggregate Operation.

(5) Click Add again. This time type in “Remaining Zombies” for the Source Name,
select Zombie for the Agent Type and once again Count for the Aggregate Operation.

At this point you should see the Data Set Editor window looking like Fig. 30. Click
on Next, then on Finish to accept the default schedule parameters that describe when the
data will be recorded. Don’t forget to save this setting by clicking on the save icon in the

RELOGO GETTING STARTED GUIDE 35

Figure 30. The Data Set Editor window.

Figure 31. The Save icon in the Repast Simphony runtime toolbar.

top left hand side of the Repast Simphony runtime (Fig. 31). Alternatively select Save
under the File menu.

Now that we’ve created a data set we want to be able to output this data set. We have
the option of outputting the data set to the console or, as we’ll be doing next, to output
the data to a file sink. To do this we carry out the following steps:

36 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

(1) Right click on Text Sinks in the Scenario Tree (you may have to scroll down a bit),
and click Add File Sink.

(2) Choose Agent Counts for the Data Set ID. (Any name is fine for the File Sink
name.)

(3) Click on tick in the first column and click the green right arrow.
(4) Repeat for the remaining items in the column.
(5) Click Next, then Finish (the default location for the text sink is good for the purpose

of this guide).

We’ve chosen the data items from our data set that we wish to output, in this case in
comma-delimited form. As we did for the data set, don’t forget to save this setting (Fig. 31).

Now we initialize the runtime (Fig. 17) and run the model via the Step or Play buttons.
At this point if we quit out of the runtime and return to our workspace we may notice that
nothing has changed. However if we select our Zombies project and “Refresh” it42, either by
right clicking on the project and choosing Refresh from the drop down menu or by pressing
the F5 button, we should see the newly generated data file (Fig. 32). Double-clicking on
this file will reveal a comma-delimited three column data set.

We can also directly connect to some external tools. To demonstrate this, we launch the
Zombies model again. After initializing the runtime, and running the model, we turn our
attention to the External Tools buttons at the top of the runtime window (Fig. 33). For
now we’ll demonstrate how we can easily export our data into Microsoft Excel. To do this
we choose the Spreadsheets plugin, the button with the calculator icon. If you see a license
panel, click on Next. On the Spreadsheet home panel, if you have Excel on your machine,
chances are the default location is correct. Otherwise select the appropriate location via
the Browse button. Click Next and you should see that the file sink we defined is selected
(Fig. 34). Click Finish and Excel should launch with the data displayed in a spreadsheet.
We recommend experimenting with the various other external tool plugins on your own.

42The Refresh is necessary when outside processes, in this case our running model, change files from
outside the workspace.

RELOGO GETTING STARTED GUIDE 37

Figure 32. The outputted data in the Zombies model.

Figure 33. The External Tools buttons in the Repast Simphony runtime.

38 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 34. The Spreadsheet wizard with the file sink selected.

RELOGO GETTING STARTED GUIDE 39

2. A little more ReLogo.

We’ve gone through many of the basics for building models in ReLogo. While there
are many more details that are beyond the scope of this getting started guide, below we
include a few important items that we haven’t covered yet.

2.1. @Diffusible variables in patches. Patches can have variables with the @Diffusible
annotation:

@Diffusible

def aPatchVariable

Patch variables annotated this way can be manipulated over all the patches simultane-
ously with the observer primitives:

• diffuse(String, double)
• diffuse4(String, double)
• diffusibleAdd(String, Number)
• diffusibleApply(String, DoubleFunction)
• diffusibleDivide(String, Number)
• diffusibleMultiply(String, Number)
• diffusibleSubtract(String, Number)

These primitives make it both easy and efficient to execute collective operations on patch
variables. These include operations such as diffusing values of patch variables and simul-
taneous scalar and functional operations.

2.2. @Plural annotation for turtles and links. The default plural form for turtle and
link types is an ‘s’ appended to the class name. Turtle and link types with unusual plural
forms can have @Plural annotations specifying custom pluralizations.

@Plural("Mice")

class Mouse extends ReLogoTurtle {

...

}

This affects the names of the generated methods in Table 1 and Table 2. The custom plural
forms replace the simple plural forms.

2.3. @Undirected/@Directed annotations for links. By default link types are di-
rected. To specify that a link type is undirected, or even to be explicit about a link type
being directed, we can use the @Undirected and @Directed annotations on a link class.

40 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 35. The Package Explorer’s view options down arrow.

@Undirected

class Infection extends ReLogoLink {

...

}

2.4. ReLogo Resource Filter. By default the Package Explorer has a ReLogo Resource
Filter selected. When in the ReLogo Perspective this hides many of the non-immediately-
essential elements in a user project. At some point, however, it will be necessary to deselect
this filter to access some of the hidden resources. To do this, select the Package Explorer’s
view options down arrow (Fig. 35) and navigate to the Filters... element (Fig. 36). This
will reveal a listing of the available Package Explorer filters. Find and deselect the ReLogo
Resource Filter here. This will reveal the previously hidden resources. Once you’ve gone
through this process, the ReLogo Resource Filter will be visible in the view options menu
(Fig. 37). At this point reenabling (or disabling) the filter can be done directly through
the menu.

RELOGO GETTING STARTED GUIDE 41

Figure 36. The drop down menu for the Package Explorer view options.

Figure 37. The drop down menu for the Package Explorer view options
after the ReLogo Resource Filter has been modified.

42 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 38. The parameters.xml file with ReLogo world dimensions highlighted.

2.5. ReLogo world dimensions. After disabling the ReLogo Resource Filter (Section 2.4),
one of the elements that can be accessed is the parameters.xml file within the Zombies.rs
folder. This is where the world dimensions are stored43. Double-clicking the file will dis-
play the contents in an XML editor (Fig. 38) where they can be modified. Note that
the dimensions are integers and “minPxcor” and “minPycor” should be less than or equal
to 044.

43Other parameters can be defined here as well. See the Repast Simphony documentation for details on
creating and using custom parameters in your model.

44These dimensions can also be accessed through the Repast Simphony Runtime GUI Parameter panel.
Make sure to click the “Set current parameter values as default parameter values” button if you wish to
retain the modified dimension values across runs.

RELOGO GETTING STARTED GUIDE 43

3. Parameter Sweeps and Model Distribution in Repast Simphony

3.1. Stochastic Execution and Parameter Sweeps. Most Repast models use random
draws and are therefore stochastic simulations. Stochastic simulations will produce differ-
ent outcomes for different random number streams, which are generally driven by choosing
different random seeds. Such simulations should be executed repeatedly to explore the
space of possible outcomes. Even without randomness, model sensitivity analysis parame-
ter sweeps should be run to determine the response of the model to changes in input values.
Repast provides both local and distributed tools for automatically completing stochastic
execution runs and parameter sweeps. Please see the Repast Batch Getting Started Guide
for more information.

3.2. Model Distribution. Repast models can be distributed to model users via the in-
stallation builder. This feature packs up your model and all of the software you need to run
it, except for a properly configured Java Runtime Environment, into a single Java archive
(“JAR”) file that can be given to model users. The resulting installer can be executed
on any system with Java version 7 or 8 installed, depending on which version was used to
compile the model. Users simply copy the installer file onto their Windows, Mac OS, or
Linux computers and the start the installer by double clicking on the file. Once the installer
is started it will show an installation wizard that will prompt the user for the information
needed to install the model. If desired, the installer can also be run in a command line
mode.

Building an installer for a model is straightforward. In Eclipse, simply choose the “Build
Installer for 〈Your Model Name Here〉 Model” from the launchers drop-down menu and
provide a location and name for the installer file. The installer file’s default name is
“setup.jar,” which is suitable for most purposes. The install builder will then package and
compress your model and the supporting Repast software. The resulting installer files are
about 70 MB plus the size of the model code and data. 75 MB to 80 MB is a common
total size.

The Repast install builder uses the IzPack system (http://izpack.org/). More informa-
tion on installer customization and use, including command line activation, can be found
on the IzPack web site.

http://izpack.org/

44 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Appendix A. Generated ReLogo Primitives

When a new turtle type is defined a number of methods become available to turtles,
patches, links and observers. These methods are added to the ReLogoTurtle, ReLogoPatch,
ReLogoLink, and ReLogoObserver classes in the project’s src-gen directory45. All user
defined turtle, patch, link and observer classes extend these classes and therefore inherit
their methods. The specific methods generated when a Zombie turtle type is defined are
summarized in Table 1. These are similar in functionality to existing ReLogo primitives
with similar names but specialized for the particular turtle type. For more information on
the generated methods you can make use of the informational pane available in the ReLogo
editor when hovering over any of them or you can navigate to the src-gen source folder
directly.

Table 1. Methods generated when a Zombie turtle type is defined.

Generated for each

turtle patch link observer

hatchZombies sproutZombies
zombiesHere zombiesHere
zombiesAt zombiesAt
zombiesOn zombiesOn zombiesOn zombiesOn
isZombieQ isZombieQ isZombieQ isZombieQ
zombies zombies zombies zombies
zombie zombie zombie zombie

createZombies
createOrderedZombies

When a new link type is defined methods are generated and become available to turtles,
patches, links and observers. The specific methods created when a Connection link type
are listed in Table 2. Note that there are differences depending on whether Connection
is a directed or undirected link type. Again, these are similar in functionality to existing
ReLogo primitives with similar names but specialized for the particular link type.

45The src-gen source directory can be made visible by disabling the ReLogo Resource Filter (Sec-
tion 2.4).

RELOGO GETTING STARTED GUIDE 45

Table 2. Methods generated when a Connection link type is defined.

Generated for eacha b

turtle patch link observer

isConnectionQ isConnectionQ isConnectionQ isConnectionQ
connections connections connections connections
connection connection connection connection
createConnectionFroma

createConnectionsFroma

createConnectionToa

createConnectionsToa

createConnectionWithb

createConnectionsWithb

inConnectionNeighborQa

inConnectionNeighborsa

inConnectionFroma

myInConnectionsa

myOutConnectionsa

outConnectionNeighborQa

outConnectionNeighborsa

outConnectionToa

connectionNeighborQ
connectionNeighbors

connectionWithb

myConnections

aFor a directed link Connection.
bFor an undirected link Connection.

46 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Appendix B. Available Graphical Elements

Table 3 lists the various elements available for use in the UserGlobalsAndPanelFactory’s
addGlobalsAndPanelComponents method.

Table 3. Elements available for use in the UserGlobalsAndPanelFactory’s
addGlobalsAndPanelComponents method

Element Types Commandsa

Slider addSlider(WL)
Chooser addChooser(WL)
Switch addSwitch(WL)

State Change Buttonb addStateChangeButton(WL)c

Input addInput
Monitor addMonitor c

Global addGlobal

aThe (WL) refers to variants with labels.
bState change buttons do not advance the simulation schedule.
cInclude variants with observer specified by id.

Additionally, Observers are provided with a registerModelParameterListener(String,Closure)
method which allows for registering a closure, or code block, to execute when a specified
model parameter (such as those defined by the Global, Slider, Chooser, Switch and Input
elements) are modified. This method would typically be called from within a setup-like
Observer method.

Groovy’s SwingBuilder can also be used to create more advanced GUIs. The elements
available are listed in Table 4. Listing 13 shows a code snippet example46. Note that the
usage pattern of the elements in Table 4 is to assign the elements to a variable and use
SwingBuilder’s widget method to incorporate them into panels you create with addPanel47.

1 def slider = sliderWL("sliderVar", "My Variable", 1, 1, 100, 50)

2 def monitor = monitorWL("monitorMethod", "My Monitor", 5)

3 addPanel{

4 gridLayout(columns:1, rows :0)

5 widget(slider)

6 widget(monitor)

7 }

Listing 13. Using Groovy’s SwingBuilder for building GUIs.

46Similar to the regular graphical control elements, this snippet is placed within the UserGlobalsAnd-
PanelFactory’s addGlobalsAndPanelComponents method.

47The addPanel method passes its closure argument to a SwingBuilder panel element.

http://groovy-lang.org/swing.html

RELOGO GETTING STARTED GUIDE 47

Table 4. Elements available for use with Groovy’s SwingBuilder in the
UserGlobalsAndPanelFactory’s addGlobalsAndPanelComponents method

Element Types Commandsa

Panel addPanel
Slider slider(WL)
Chooser chooser(WL)
Switch rSwitch(WL)

State Change Buttonb stateChangeButton(WL)c

Input input
Monitor monitor c

aThe (WL) refers to variants with labels.
bState change buttons do not advance the simulation schedule.
cInclude variants with observer specified by id.

48 JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Appendix C. More on Turtle Shapes

Any image file that’s placed in the shapes folder of a ReLogo project can be referred
to by name (minus suffix) within the model. Different platforms will have some minor
differences in the types of image files that are readable but most of the standard ones
can be used (e.g., “jpeg”, “pbm”, “bmp”, “jpg”, “wbmp”, “ppm”, “png”, “jp2”, “pgm”,
“gif”). In addition to regular image files, ReLogo allows one to create svg files that can
either be used as images, which we refer to as “complex” svg files, or as shapes which
have specified regions with fixed colors and regions whose colors can be changed within a
ReLogo simulation. The default svg files that come with any newly created ReLogo project
are of the latter type, which we refer to as “simple” svg files.

We recommend the free and open source SVG editor Inkscape for creating svg images.
There are some keywords that can be used to define the special ReLogo properties of an
svg file you create. These are specified as a comma delimited list in the “Keywords” field
of the file’s Document Metadata (File → Document Metadata...):

• simple: indicates that the svg file is simple (assumed complex if not specified)
• rotate: indicates whether the icon should rotate according to the turtle’s heading
• offset value: indicates the clockwise offset (in degrees) of the shape

To fix the color of an element within a simple svg file right click on the element and
select “Object Properties.” In the Description field enter “fixedColor” and the element
will retain its color. All other elements in a simple svg will take on the color assigned to
the turtle within a simulation.

http://inkscape.org/

	0. Before we Get Started
	1. Getting Started with ReLogo
	1.1. Creating the Human and Zombie turtle types
	1.2. Defining Human and Zombie behaviors.
	1.3. Coordinating behaviors with the UserObserver.
	1.4. Creating the graphical control and display elements.
	1.5. Running the Zombies model.
	1.6. Adding links to the Zombies model.
	1.7. Data Sets, Sinks and External Plugins.

	2. A little more ReLogo.
	2.1. @Diffusible variables in patches
	2.2. @Plural annotation for turtles and links
	2.3. @Undirected/@Directed annotations for links
	2.4. ReLogo Resource Filter
	2.5. ReLogo world dimensions

	3. Parameter Sweeps and Model Distribution in Repast Simphony
	3.1. Stochastic Execution and Parameter Sweeps
	3.2. Model Distribution

	Appendix A. Generated ReLogo Primitives
	Appendix B. Available Graphical Elements
	Appendix C. More on Turtle Shapes

