Distributed Adaptive Systems (D

Agent-based Modelling and Simulation
"Repast Simphony”

Antonio Bucchiarone

Fondazione Bruno Kessler, Trento — Italy
bucchiarone@fbk.eu

2 October 2019
e

mailto:bucchiarone@fbk.eu

Complex Adaptive Systems (CAS) B D(

NDAZIO
UNO KE

CAS are composed by interacting, autonomous agents.
Agents have properties and behaviors.

Agents interacts with and influence each other.

Agents learn from their experiences.

Agents adapt their behaviors to they are better suited to their
environment(s)

North, MJ, NT Collier, J Ozik, E Tatara, M Altaweel, CM Macal, M Bragen, and P Sydelko, "Complex Adaptive Systems Modeling with Repast
Simphony", Complex Adaptive Systems Modeling, Springer, Heidelberg, FRG (2013). https://doi.org/10.1186/2194-3206-1-3.

October, 2 2019 ABMS 2

https://doi.org/10.1186/2194-3206-1-3

Agent-based Modeling (ABM) -:(

NDAZIO
UNO KE

Agent-based modeling has been used successfully to model complex
adaptive systems.

ABM is used in many disciplines

Biology, Supply chains, economics, military planning, consumer
market analysis, etc..

ABM tools
StarLogo, NetLogo, Swarm, MASON, EcolLab, Ascape
Recursive Porous Agent Simulation Toolkit (REPAST)
Repast Simphony

October, 2 2019 ABMS 3

Repast Simphony - | 'D(

NDAZIONE
IIF 0 KESSLE!

Free and open source toolkit to handle large-scale agent simulation
application development.

Growing and large community.

Multiple users have applied Repast to a wide variety of applications.

Socials systems, evolutionary systems, market modeling,
industrial analytics.

O
https://sourceforge.net/projects/repast/
https://repast.github.io/repast simphony.html .repaSt

https://repast.github.io/docs.html

North, MJ, NT Collier, J Ozik, E Tatara, M Altaweel, CM Macal, M Bragen, and P Sydelko, "Complex Adaptive Systems Modeling with Repast
Simphony", Complex Adaptive Systems Modeling, Springer, Heidelberg, FRG (2013). https://doi.org/10.1186/2194-3206-1-3.

October, 2 2019 ABMS 4

https://sourceforge.net/projects/repast/
https://repast.github.io/repast_simphony.html
https://repast.github.io/docs.html
https://doi.org/10.1186/2194-3206-1-3

Repast Simphony - |l 'D(

NDAZIO
UNO KE

Repast Simphony uses Eclipse as its primary development environment.

Repast Simphony leverage Eclipse’s plug-in architecture to provide a set of
development options.

Repast Simphony Eclipse plug-ins provide tools, views, and perspectives for
creating a range of Repast-specific model components:

general Repast projects
RelLogo projects
Flowcharts, and
RelLogo agents

The plug-ins allow Repast models to be executed, debugged, and packaged
into self-contained installers for deployment.

October, 2 2019 ABMS 5

Repast Simphony Architecture B D(

FONDAZIONE
BRUNO KESSLER

= It uses a highly modular architecture.

= Each module is an independent “plug-in” that can be connected or
disconnected with a few lines of XML.

Plugin or plugin sets Function

Simphony Application Framework Pno;dides the basic runtime interface plug-in system and user interface
tools

Eclipse Set Provides model specification and programming tools

Core Set Provides central simulation functions, such as scheduling

ReLogo Set Provides a simple modeling language and structure

GIS Provides GIS modeling and visualization

Freeze Dryer Set Provides persistence in XML and text formats

Batch Run Set Provides parameter sweeps and stochastic iteration

Deployrent Packages user models for self-contained release

Charts Provides interactive model graphing in the runtime interface

Model Integration Provides tools for embedding legacy models

2D Visualization Set Provides tools for interactive two-dimensional (2D) model viewing

3D Visualization Set Provides tools for interactive three-dimensional (3D) model viewing

Terracotta Provides distributed model execution

System Dynamics Provides tools for ordinary differential and difference equations

Third-Party Application Set Supports a set of independent plug-ins for:

® Geographic Resources Analysis Support System (GRASS),

o Java Universal Network/Graph Framework (JUNG) network analysis,

o *ORA network analysis,

o Pajek network visualization,

e R statistics,

® iReport and Jasper Reports enterprise reporting,

o Spreadsheets,

® Structured Query Language (SQL) analysis within running simulations,
o VisAD scientific visualization, and

® Weka data mining.

CAS Modeling Example ')Dr(

How to develop models of CAS with Repast Simphony.
Scenario:
Innovation Diffusion Environment,
Group of people randomly circulates.

People occasionally communicate ideas when they encounter
one another.

When and idea is transferred, a new link is made between the
transferring parties, and then any existing network lines are
forgotten.

People occasionally develop new ideas.
When they do so, they forget all their old links.
The quality of ideas is rated and tracked over time.

What is the quality of ideas over time?

October, 2 2019 ABMS 7

When to use agent-based modeling 'D(

FONDAZIONE
BRUNO KESSLER

Must have real individual behaviors;

Adapt, change, learn;

Form dynamically changing relationships;
Form organizations;

Have spatial interactions;

Have arbitrarily large populations; or

When structural change is an output, not an input.

October, 2 2019 ABMS 8

Essential agent-based model design g 'D(

FONDAZIONE
BRUNO KESSLER

What are the modeling question(s)?

Who are the stakeholders?
What output are needed?
What input data are available?
Who are the agents?

What are the agent behaviors?

What is the agent environment?

October, 2 2019 ABMS 9

Essential agent-based model design g 'D(

FONDAZIONE
BRUNO KESSLER

- What are the modeling question(s)?

How does the quality of ideas change over time in the innovation
network?

October, 2 2019 ABMS 10

Essential agent-based model design g 'D(

FONDAZIONE
BRUNO KESSLER

- Who are the stakeholders?

The stakeholders in this demonstration case are simply the modelers
themselves.

October, 2 2019 ABMS 11

Essential agent-based model design g 'D(

FONDAZIONE
BRUNO KESSLER

* What Outputs Are Needed?

The output will be the history of the quality of innovation. This output
will be displayed as a time series chart.

October, 2 2019 ABMS 12

Essential agent-based model design g 'D(

FONDAZIONE
BRUNO KESSLER

- What Input Data Are Available?

For this model, the input will be the probability of developing a new
innovation on a given time step.

October, 2 2019 ABMS 13

Essential agent-based model design qu 'D(

FONDAZIONE
BRUNO KESSLER

* Who are the agents?

The agents are individual people in the innovation network.

October, 2 2019 ABMS 14

Essential agent-based model design ¢ 'D(

What are the Agent Behaviors?

The agents will randomly circulate on a continuous two-dimensional
surface.

When an agent with an innovation comes close enough to another agent,
they will transfer their ideas.

When an idea is transferred, a new link is made between the transferring
parties.

Any existing network links in the recipient will be deleted.

Agents develop at the rate given by the input innovation probability.
When they do so, they delete all their links.

Each idea is represented using a number.

The value of the number represents the relative quality of the idea.

The value also automatically maps into a display color for the agents and
its links.

October, 2 2019 ABMS 15

Essential agent-based model design g 'D(

FONDAZIONE
BRUNO KESSLER

What is the Agent Environment?

The agent environment is a simple, continuous 2D surface with
support for a network between agents.

October, 2 2019 ABMS 16

RelLogo Project Example B D(

FONDAZIONE
BRUNO KESSLER

[® package Explorer 33

¥ =2 Innovation
» (38 src Model code

[~ output
> @shapeQ Set of optional icons that may be assigned to agents.

v (3 src

v H innovation.relogo
> UserGlobalsAndPanelFactory.groovy
» |£] UserLink.groovy
» |£] UserObserver.groovy Automatica”y generated

» |£] UserPatch.groovy model Components
» |£] UserTurtle.groovy

October, 2 2019 ABMS 17

Basic User Controls 'D(

FONDAZIONE
BRUNO KESSLER

Controls that will appear in
the model runtime window

> UserGlobalsAndPanelFactory.groovy

package innojation.relogo
import repast.simphony.relogo.factories.AbstractReLogoGlobalsAndPanelFactory

public class UserGlobalsAndPanelFactory extends AbstractReLogoGlobalsAndPanelFactory<{
public void addGlobalsAndPanelComponents(){

// add the needed control buttons
addStateChangeButton("setup");
addStateChangeButton('go");

//add the model input
addInput("innovationProbability",0.001)

October, 2 2019 ABMS 18

Observer 'D(

Ff'H)«/lN
BRUNO KE
» (2] UserObserver.groovy How to initialize the model and what
happens at each simulation tick.
package innovjation.relogo
simport static repast.simphony.relogo.Utility.x;[]
class UserObserver extends RelLogoObserver{
def setup() { o
// remove any existing turtles clear all the model of any existing turtles.
//build a new set of turtles
et les (o0) 4 create a set of 20 tgrt_lclas, set the shape of
SELEENE e each turtle, set the initial color and move
setColor(gray()) -
, forvard() the turtle agent one step forward.
//distribute an initial innovation : : : H H
ssk(turtles().Tirst ()¢ retrieve the first turtle and set its innovation
i tion = yell
} T At parameter and color to yellow.

2 J

//define the model time step routine

def go() {
//give each turtle a chance to act
ask(turtles()){
act()
}
}

}

October, 2 2019 ABMS 19

Observer =D(

FONDAZIONE
BRUNO KESSLER

How to initialize the model and what
happens at each simulation tick.

» |£] UserObserver.groovy

package innovltion.relogo
simport static repast.simphony.relogo.Utility.x;[]
class UserObserver extends RelLogoObserver{

// define the model builder
def setup() {
// remove any existing turtles
clearAll()
//build a new set of turtles
createTurtles(20){
setShape("person")
setColor(gray())
forward(1)
}
//distribute an initial innovation
ask(turtles().first()){
innovation = yellow()

) setColor(innovation)

}

//define the model time st ti e e

def go() £ o TeR TORE ask each turtle agent to execute its “act
//9ive each turtle a chance to act
ask(turtles()){ method once each time the simulation is
y 2t stepped.

October, 2 2019 ABMS 20

Agent Behavior :D(

> [€) UserTurtie.groovy It contains all the Turtle agent behaviors

package innovation.relogo

rimport static repast.simphony.relogo.Utility.x;[] 1' M moves the turtle forward by 1'1 unlts In d
class UserTurtle extends ReLogoTurtle{ direction that is randomly determined.

// Define the innovation tracker.
int innovation = @
// Define the activity.

def 3ct0) 1 randonly. 2. spontaneous innovations are randomly
Eiéﬁifzggﬁgn:&ié% created within the turtle by generating a
orwar .
// Spontaneously create innovations. random integer between zero and one and
if (randomFloat(1.0) > (1.0-innovationProbability)) {

// Develop the new imnovation. checking this value against the input

7 Chear out my ota links. threshold value (1.0 -innovationProbability).

ask (myLinks()) { die() }
}// Check for an innovation.

if (innovation > @) {
// Diffuse an innovation from "myself" to E;
// nearby turtles ("self ").

If a new innovation is to be created, then the

ask lother (turtlestiere())) ¢ “innovation” value is set based on the
innovation = myself().innovation) - .
setColor(myself().getColor()) random value, the turtle’s icon color is set to

// Clear out the old links.

2 Bt o ey it the new innovation value, and the turtle’s
UserLink newLink = . . .

et ik Settotor et Pl getColar() existing links are destroyed.

}

b
b
}

October, 2 2019 ABMS 21

Agent Behavior B D(

Fl AIJ«/\IW
RUNO KE

> [£ UserTurtle groovy It contains all the Turtle agent behaviors

package innovation.relogo

inport static repast.singhony. relogo.Utility.x:(] 4. In the event that a new innovation is created,
class UserTurtle extends RelLogoTurtle{ the tu rtle aSkS for Other tu rtle
int tnnovation oo o ReKer agents nearby (located in the same patch) to
// Define the activity.
def 3ct) L ord randonty. which the new innovation will be transferred.
left(random(15))
fomvaratt oy 1)
// Spontaneously create innovations. 5. The innovating turtle sets its neighboring
if (randomFloat(1.0) > (1.0-innovationProbability)) { . .
//Dtlp ghgongwr;;gg;?ﬁ%nz 2: e turtles’ “ innovation” and “ color” to
7 Coear outmy o2d Links. the new “ innovation” value, destroys the
ask (myLinks()) { die() } . . . L. .
}// Check for an innovation, neighboring turtles’ existing links, and generates
;; éi??ﬁ::t;gni:ng\)/aiion from "myself" to a neW Ilnk between the tu rtle and ItS nelgh bOI’.

// nearby turtles ("self ").

ask (other(turtlesHere())) {

// Get the innovation.
innovation = myself().innovation
setColor(myself().getColor())
// Clear out the old links.
ask (myLinks()) { die() }
// Build a new link.
UserLink newLink =
createLinkWith(myself())
newLink.setColor(myself().getColor())
}

}
b

}

October, 2 2019 ABMS 22

Final Exam 'D(

Grading system:
50% Oral exam
50% Lab assignments

Implementation of distributed algorithms, to be completed during the
course

|deally, 3 assignments (Early November, early December, early
January after the course)

Based on https://repast.github.io/ (Java, agent-based modeling)
Group-based (1-3 students)

https://bucchiarone.bitbucket.io/

October, 2 2019 ABMS 23

https://bucchiarone.bitbucket.io/

